Metamath Proof Explorer


Theorem f1oprswap

Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Assertion f1oprswap ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 f1osng ( ( 𝐴𝑉𝐴𝑉 ) → { ⟨ 𝐴 , 𝐴 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐴 } )
2 1 anidms ( 𝐴𝑉 → { ⟨ 𝐴 , 𝐴 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐴 } )
3 2 ad2antrr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → { ⟨ 𝐴 , 𝐴 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐴 } )
4 dfsn2 { ⟨ 𝐴 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐴 ⟩ , ⟨ 𝐴 , 𝐴 ⟩ }
5 opeq2 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
6 opeq1 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ )
7 5 6 preq12d ( 𝐴 = 𝐵 → { ⟨ 𝐴 , 𝐴 ⟩ , ⟨ 𝐴 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } )
8 4 7 syl5eq ( 𝐴 = 𝐵 → { ⟨ 𝐴 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } )
9 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
10 preq2 ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } )
11 9 10 syl5eq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐴 , 𝐵 } )
12 8 11 11 f1oeq123d ( 𝐴 = 𝐵 → ( { ⟨ 𝐴 , 𝐴 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐴 } ↔ { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } ) )
13 12 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → ( { ⟨ 𝐴 , 𝐴 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐴 } ↔ { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } ) )
14 3 13 mpbid ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴 = 𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } )
15 simpll ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → 𝐴𝑉 )
16 simplr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → 𝐵𝑊 )
17 simpr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → 𝐴𝐵 )
18 fnprg ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐵𝑊𝐴𝑉 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } )
19 15 16 16 15 17 18 syl221anc ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } )
20 cnvsng ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ } )
21 cnvsng ( ( 𝐵𝑊𝐴𝑉 ) → { ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ } )
22 21 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ } )
23 20 22 uneq12d ( ( 𝐴𝑉𝐵𝑊 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) = ( { ⟨ 𝐵 , 𝐴 ⟩ } ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
24 uncom ( { ⟨ 𝐵 , 𝐴 ⟩ } ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } )
25 23 24 syl6eq ( ( 𝐴𝑉𝐵𝑊 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) )
26 25 adantr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) )
27 df-pr { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } )
28 27 cnveqi { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } )
29 cnvun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } )
30 28 29 eqtri { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐵 , 𝐴 ⟩ } )
31 26 30 27 3eqtr4g ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } )
32 31 fneq1d ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } ↔ { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } ) )
33 19 32 mpbird ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } )
34 dff1o4 ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } ↔ ( { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } ∧ { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐴 , 𝐵 } ) )
35 19 33 34 sylanbrc ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } )
36 14 35 pm2.61dane ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐵 , 𝐴 ⟩ } : { 𝐴 , 𝐵 } –1-1-onto→ { 𝐴 , 𝐵 } )