Metamath Proof Explorer


Theorem fdmfifsupp

Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)

Ref Expression
Hypotheses fdmfisuppfi.f ( 𝜑𝐹 : 𝐷𝑅 )
fdmfisuppfi.d ( 𝜑𝐷 ∈ Fin )
fdmfisuppfi.z ( 𝜑𝑍𝑉 )
Assertion fdmfifsupp ( 𝜑𝐹 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fdmfisuppfi.f ( 𝜑𝐹 : 𝐷𝑅 )
2 fdmfisuppfi.d ( 𝜑𝐷 ∈ Fin )
3 fdmfisuppfi.z ( 𝜑𝑍𝑉 )
4 1 ffund ( 𝜑 → Fun 𝐹 )
5 1 2 3 fdmfisuppfi ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )
6 1 ffnd ( 𝜑𝐹 Fn 𝐷 )
7 fnex ( ( 𝐹 Fn 𝐷𝐷 ∈ Fin ) → 𝐹 ∈ V )
8 6 2 7 syl2anc ( 𝜑𝐹 ∈ V )
9 isfsupp ( ( 𝐹 ∈ V ∧ 𝑍𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) )
10 8 3 9 syl2anc ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) )
11 4 5 10 mpbir2and ( 𝜑𝐹 finSupp 𝑍 )