Metamath Proof Explorer


Theorem fin1a2lem13

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2lem13 ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) → ¬ ( 𝐵𝐶 ) ∈ FinII )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ( 𝐵𝐶 ) ∈ FinII )
2 simpll1 ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → 𝐴 ⊆ 𝒫 𝐵 )
3 ssel2 ( ( 𝐴 ⊆ 𝒫 𝐵𝑔𝐴 ) → 𝑔 ∈ 𝒫 𝐵 )
4 3 elpwid ( ( 𝐴 ⊆ 𝒫 𝐵𝑔𝐴 ) → 𝑔𝐵 )
5 4 ssdifd ( ( 𝐴 ⊆ 𝒫 𝐵𝑔𝐴 ) → ( 𝑔𝐶 ) ⊆ ( 𝐵𝐶 ) )
6 sseq1 ( 𝑓 = ( 𝑔𝐶 ) → ( 𝑓 ⊆ ( 𝐵𝐶 ) ↔ ( 𝑔𝐶 ) ⊆ ( 𝐵𝐶 ) ) )
7 5 6 syl5ibrcom ( ( 𝐴 ⊆ 𝒫 𝐵𝑔𝐴 ) → ( 𝑓 = ( 𝑔𝐶 ) → 𝑓 ⊆ ( 𝐵𝐶 ) ) )
8 7 rexlimdva ( 𝐴 ⊆ 𝒫 𝐵 → ( ∃ 𝑔𝐴 𝑓 = ( 𝑔𝐶 ) → 𝑓 ⊆ ( 𝐵𝐶 ) ) )
9 eqid ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) )
10 9 elrnmpt ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 𝑓 = ( 𝑔𝐶 ) ) )
11 10 elv ( 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 𝑓 = ( 𝑔𝐶 ) )
12 velpw ( 𝑓 ∈ 𝒫 ( 𝐵𝐶 ) ↔ 𝑓 ⊆ ( 𝐵𝐶 ) )
13 8 11 12 3imtr4g ( 𝐴 ⊆ 𝒫 𝐵 → ( 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → 𝑓 ∈ 𝒫 ( 𝐵𝐶 ) ) )
14 13 ssrdv ( 𝐴 ⊆ 𝒫 𝐵 → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ⊆ 𝒫 ( 𝐵𝐶 ) )
15 2 14 syl ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ⊆ 𝒫 ( 𝐵𝐶 ) )
16 simplrr ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → 𝐶𝐴 )
17 difid ( 𝐶𝐶 ) = ∅
18 17 eqcomi ∅ = ( 𝐶𝐶 )
19 difeq1 ( 𝑔 = 𝐶 → ( 𝑔𝐶 ) = ( 𝐶𝐶 ) )
20 19 rspceeqv ( ( 𝐶𝐴 ∧ ∅ = ( 𝐶𝐶 ) ) → ∃ 𝑔𝐴 ∅ = ( 𝑔𝐶 ) )
21 18 20 mpan2 ( 𝐶𝐴 → ∃ 𝑔𝐴 ∅ = ( 𝑔𝐶 ) )
22 0ex ∅ ∈ V
23 9 elrnmpt ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ∅ = ( 𝑔𝐶 ) ) )
24 22 23 ax-mp ( ∅ ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ∅ = ( 𝑔𝐶 ) )
25 21 24 sylibr ( 𝐶𝐴 → ∅ ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
26 ne0i ( ∅ ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ≠ ∅ )
27 16 25 26 3syl ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ≠ ∅ )
28 simpll2 ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → [] Or 𝐴 )
29 9 elrnmpt ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 𝑥 = ( 𝑔𝐶 ) ) )
30 29 elv ( 𝑥 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 𝑥 = ( 𝑔𝐶 ) )
31 difeq1 ( 𝑔 = 𝑒 → ( 𝑔𝐶 ) = ( 𝑒𝐶 ) )
32 31 eqeq2d ( 𝑔 = 𝑒 → ( 𝑥 = ( 𝑔𝐶 ) ↔ 𝑥 = ( 𝑒𝐶 ) ) )
33 32 cbvrexvw ( ∃ 𝑔𝐴 𝑥 = ( 𝑔𝐶 ) ↔ ∃ 𝑒𝐴 𝑥 = ( 𝑒𝐶 ) )
34 sorpssi ( ( [] Or 𝐴 ∧ ( 𝑒𝐴𝑔𝐴 ) ) → ( 𝑒𝑔𝑔𝑒 ) )
35 ssdif ( 𝑒𝑔 → ( 𝑒𝐶 ) ⊆ ( 𝑔𝐶 ) )
36 ssdif ( 𝑔𝑒 → ( 𝑔𝐶 ) ⊆ ( 𝑒𝐶 ) )
37 35 36 orim12i ( ( 𝑒𝑔𝑔𝑒 ) → ( ( 𝑒𝐶 ) ⊆ ( 𝑔𝐶 ) ∨ ( 𝑔𝐶 ) ⊆ ( 𝑒𝐶 ) ) )
38 34 37 syl ( ( [] Or 𝐴 ∧ ( 𝑒𝐴𝑔𝐴 ) ) → ( ( 𝑒𝐶 ) ⊆ ( 𝑔𝐶 ) ∨ ( 𝑔𝐶 ) ⊆ ( 𝑒𝐶 ) ) )
39 sseq2 ( 𝑓 = ( 𝑔𝐶 ) → ( ( 𝑒𝐶 ) ⊆ 𝑓 ↔ ( 𝑒𝐶 ) ⊆ ( 𝑔𝐶 ) ) )
40 sseq1 ( 𝑓 = ( 𝑔𝐶 ) → ( 𝑓 ⊆ ( 𝑒𝐶 ) ↔ ( 𝑔𝐶 ) ⊆ ( 𝑒𝐶 ) ) )
41 39 40 orbi12d ( 𝑓 = ( 𝑔𝐶 ) → ( ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ↔ ( ( 𝑒𝐶 ) ⊆ ( 𝑔𝐶 ) ∨ ( 𝑔𝐶 ) ⊆ ( 𝑒𝐶 ) ) ) )
42 38 41 syl5ibrcom ( ( [] Or 𝐴 ∧ ( 𝑒𝐴𝑔𝐴 ) ) → ( 𝑓 = ( 𝑔𝐶 ) → ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) )
43 42 expr ( ( [] Or 𝐴𝑒𝐴 ) → ( 𝑔𝐴 → ( 𝑓 = ( 𝑔𝐶 ) → ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) ) )
44 43 rexlimdv ( ( [] Or 𝐴𝑒𝐴 ) → ( ∃ 𝑔𝐴 𝑓 = ( 𝑔𝐶 ) → ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) )
45 11 44 syl5bi ( ( [] Or 𝐴𝑒𝐴 ) → ( 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) )
46 45 ralrimiv ( ( [] Or 𝐴𝑒𝐴 ) → ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) )
47 sseq1 ( 𝑥 = ( 𝑒𝐶 ) → ( 𝑥𝑓 ↔ ( 𝑒𝐶 ) ⊆ 𝑓 ) )
48 sseq2 ( 𝑥 = ( 𝑒𝐶 ) → ( 𝑓𝑥𝑓 ⊆ ( 𝑒𝐶 ) ) )
49 47 48 orbi12d ( 𝑥 = ( 𝑒𝐶 ) → ( ( 𝑥𝑓𝑓𝑥 ) ↔ ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) )
50 49 ralbidv ( 𝑥 = ( 𝑒𝐶 ) → ( ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) ↔ ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( ( 𝑒𝐶 ) ⊆ 𝑓𝑓 ⊆ ( 𝑒𝐶 ) ) ) )
51 46 50 syl5ibrcom ( ( [] Or 𝐴𝑒𝐴 ) → ( 𝑥 = ( 𝑒𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) ) )
52 51 rexlimdva ( [] Or 𝐴 → ( ∃ 𝑒𝐴 𝑥 = ( 𝑒𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) ) )
53 33 52 syl5bi ( [] Or 𝐴 → ( ∃ 𝑔𝐴 𝑥 = ( 𝑔𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) ) )
54 30 53 syl5bi ( [] Or 𝐴 → ( 𝑥 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) ) )
55 54 ralrimiv ( [] Or 𝐴 → ∀ 𝑥 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) )
56 sorpss ( [] Or ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ( 𝑥𝑓𝑓𝑥 ) )
57 55 56 sylibr ( [] Or 𝐴 → [] Or ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
58 28 57 syl ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → [] Or ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
59 fin2i ( ( ( ( 𝐵𝐶 ) ∈ FinII ∧ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ⊆ 𝒫 ( 𝐵𝐶 ) ) ∧ ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ≠ ∅ ∧ [] Or ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ) ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
60 1 15 27 58 59 syl22anc ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
61 simpll3 ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ¬ 𝐴𝐴 )
62 difeq1 ( 𝑔 = 𝑓 → ( 𝑔𝐶 ) = ( 𝑓𝐶 ) )
63 62 cbvmptv ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐴 ↦ ( 𝑓𝐶 ) )
64 63 elrnmpt ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) )
65 64 ibi ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ∃ 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) )
66 eqid ( 𝐶 ) = ( 𝐶 )
67 difeq1 ( 𝑔 = → ( 𝑔𝐶 ) = ( 𝐶 ) )
68 67 rspceeqv ( ( 𝐴 ∧ ( 𝐶 ) = ( 𝐶 ) ) → ∃ 𝑔𝐴 ( 𝐶 ) = ( 𝑔𝐶 ) )
69 66 68 mpan2 ( 𝐴 → ∃ 𝑔𝐴 ( 𝐶 ) = ( 𝑔𝐶 ) )
70 69 adantl ( ( ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝐴 ) → ∃ 𝑔𝐴 ( 𝐶 ) = ( 𝑔𝐶 ) )
71 vex ∈ V
72 difexg ( ∈ V → ( 𝐶 ) ∈ V )
73 9 elrnmpt ( ( 𝐶 ) ∈ V → ( ( 𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ( 𝐶 ) = ( 𝑔𝐶 ) ) )
74 71 72 73 mp2b ( ( 𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ( 𝐶 ) = ( 𝑔𝐶 ) )
75 70 74 sylibr ( ( ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝐴 ) → ( 𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
76 elssuni ( ( 𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → ( 𝐶 ) ⊆ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
77 75 76 syl ( ( ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝐴 ) → ( 𝐶 ) ⊆ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
78 simplr ( ( ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝐴 ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) )
79 77 78 sseqtrd ( ( ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝐴 ) → ( 𝐶 ) ⊆ ( 𝑓𝐶 ) )
80 79 adantll ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( 𝐶 ) ⊆ ( 𝑓𝐶 ) )
81 unss2 ( ( 𝐶 ) ⊆ ( 𝑓𝐶 ) → ( 𝐶 ∪ ( 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓𝐶 ) ) )
82 uncom ( 𝐶 ∪ ( 𝐶 ) ) = ( ( 𝐶 ) ∪ 𝐶 )
83 undif1 ( ( 𝐶 ) ∪ 𝐶 ) = ( 𝐶 )
84 82 83 eqtri ( 𝐶 ∪ ( 𝐶 ) ) = ( 𝐶 )
85 84 a1i ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( 𝐶 ∪ ( 𝐶 ) ) = ( 𝐶 ) )
86 61 ad2antrr ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ¬ 𝐴𝐴 )
87 16 ad2antrr ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → 𝐶𝐴 )
88 simplrr ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) )
89 eqeq1 ( 𝑒 = ( 𝑥𝐶 ) → ( 𝑒 = ∅ ↔ ( 𝑥𝐶 ) = ∅ ) )
90 simpllr ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) )
91 ssdif0 ( 𝑓𝐶 ↔ ( 𝑓𝐶 ) = ∅ )
92 91 biimpi ( 𝑓𝐶 → ( 𝑓𝐶 ) = ∅ )
93 92 ad2antlr ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ( 𝑓𝐶 ) = ∅ )
94 90 93 eqtrd ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ∅ )
95 uni0c ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ∅ ↔ ∀ 𝑒 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) 𝑒 = ∅ )
96 94 95 sylib ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ∀ 𝑒 ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) 𝑒 = ∅ )
97 eqid ( 𝑥𝐶 ) = ( 𝑥𝐶 )
98 difeq1 ( 𝑔 = 𝑥 → ( 𝑔𝐶 ) = ( 𝑥𝐶 ) )
99 98 rspceeqv ( ( 𝑥𝐴 ∧ ( 𝑥𝐶 ) = ( 𝑥𝐶 ) ) → ∃ 𝑔𝐴 ( 𝑥𝐶 ) = ( 𝑔𝐶 ) )
100 97 99 mpan2 ( 𝑥𝐴 → ∃ 𝑔𝐴 ( 𝑥𝐶 ) = ( 𝑔𝐶 ) )
101 vex 𝑥 ∈ V
102 difexg ( 𝑥 ∈ V → ( 𝑥𝐶 ) ∈ V )
103 9 elrnmpt ( ( 𝑥𝐶 ) ∈ V → ( ( 𝑥𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ( 𝑥𝐶 ) = ( 𝑔𝐶 ) ) )
104 101 102 103 mp2b ( ( 𝑥𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ↔ ∃ 𝑔𝐴 ( 𝑥𝐶 ) = ( 𝑔𝐶 ) )
105 100 104 sylibr ( 𝑥𝐴 → ( 𝑥𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
106 105 adantl ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐶 ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
107 89 96 106 rspcdva ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐶 ) = ∅ )
108 ssdif0 ( 𝑥𝐶 ↔ ( 𝑥𝐶 ) = ∅ )
109 107 108 sylibr ( ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) ∧ 𝑥𝐴 ) → 𝑥𝐶 )
110 109 ralrimiva ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → ∀ 𝑥𝐴 𝑥𝐶 )
111 unissb ( 𝐴𝐶 ↔ ∀ 𝑥𝐴 𝑥𝐶 )
112 110 111 sylibr ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → 𝐴𝐶 )
113 elssuni ( 𝐶𝐴𝐶 𝐴 )
114 113 ad2antrr ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → 𝐶 𝐴 )
115 112 114 eqssd ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → 𝐴 = 𝐶 )
116 simpll ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → 𝐶𝐴 )
117 115 116 eqeltrd ( ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ∧ 𝑓𝐶 ) → 𝐴𝐴 )
118 117 ex ( ( 𝐶𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) → ( 𝑓𝐶 𝐴𝐴 ) )
119 87 88 118 syl2anc ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( 𝑓𝐶 𝐴𝐴 ) )
120 86 119 mtod ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ¬ 𝑓𝐶 )
121 28 ad2antrr ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → [] Or 𝐴 )
122 simplrl ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → 𝑓𝐴 )
123 sorpssi ( ( [] Or 𝐴 ∧ ( 𝑓𝐴𝐶𝐴 ) ) → ( 𝑓𝐶𝐶𝑓 ) )
124 121 122 87 123 syl12anc ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( 𝑓𝐶𝐶𝑓 ) )
125 orel1 ( ¬ 𝑓𝐶 → ( ( 𝑓𝐶𝐶𝑓 ) → 𝐶𝑓 ) )
126 120 124 125 sylc ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → 𝐶𝑓 )
127 undif ( 𝐶𝑓 ↔ ( 𝐶 ∪ ( 𝑓𝐶 ) ) = 𝑓 )
128 126 127 sylib ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( 𝐶 ∪ ( 𝑓𝐶 ) ) = 𝑓 )
129 85 128 sseq12d ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( ( 𝐶 ∪ ( 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓𝐶 ) ) ↔ ( 𝐶 ) ⊆ 𝑓 ) )
130 ssun1 ⊆ ( 𝐶 )
131 sstr ( ( ⊆ ( 𝐶 ) ∧ ( 𝐶 ) ⊆ 𝑓 ) → 𝑓 )
132 130 131 mpan ( ( 𝐶 ) ⊆ 𝑓𝑓 )
133 129 132 syl6bi ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( ( 𝐶 ∪ ( 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓𝐶 ) ) → 𝑓 ) )
134 81 133 syl5 ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → ( ( 𝐶 ) ⊆ ( 𝑓𝐶 ) → 𝑓 ) )
135 80 134 mpd ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) ∧ 𝐴 ) → 𝑓 )
136 135 ralrimiva ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → ∀ 𝐴 𝑓 )
137 unissb ( 𝐴𝑓 ↔ ∀ 𝐴 𝑓 )
138 136 137 sylibr ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → 𝐴𝑓 )
139 elssuni ( 𝑓𝐴𝑓 𝐴 )
140 139 ad2antrl ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → 𝑓 𝐴 )
141 138 140 eqssd ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → 𝐴 = 𝑓 )
142 simprl ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → 𝑓𝐴 )
143 141 142 eqeltrd ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) ∧ ( 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) ) ) → 𝐴𝐴 )
144 143 rexlimdvaa ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ( ∃ 𝑓𝐴 ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) = ( 𝑓𝐶 ) → 𝐴𝐴 ) )
145 65 144 syl5 ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ( ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) → 𝐴𝐴 ) )
146 61 145 mtod ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) ∧ ( 𝐵𝐶 ) ∈ FinII ) → ¬ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) ∈ ran ( 𝑔𝐴 ↦ ( 𝑔𝐶 ) ) )
147 60 146 pm2.65da ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶𝐴 ) ) → ¬ ( 𝐵𝐶 ) ∈ FinII )