Metamath Proof Explorer


Theorem fin23lem30

Description: Lemma for fin23 . The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
Assertion fin23lem30 ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
4 fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
5 fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
6 fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
7 eqif ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) )
8 7 biimpi ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) )
9 simpr ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun 𝑡 )
10 5 funmpt2 Fun 𝑅
11 funco ( ( Fun 𝑡 ∧ Fun 𝑅 ) → Fun ( 𝑡𝑅 ) )
12 9 10 11 sylancl ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun ( 𝑡𝑅 ) )
13 elunirn ( Fun ( 𝑡𝑅 ) → ( 𝑎 ran ( 𝑡𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡𝑅 ) 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) ) )
14 12 13 syl ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ran ( 𝑡𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡𝑅 ) 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) ) )
15 dmcoss dom ( 𝑡𝑅 ) ⊆ dom 𝑅
16 15 sseli ( 𝑏 ∈ dom ( 𝑡𝑅 ) → 𝑏 ∈ dom 𝑅 )
17 fvco ( ( Fun 𝑅𝑏 ∈ dom 𝑅 ) → ( ( 𝑡𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
18 10 17 mpan ( 𝑏 ∈ dom 𝑅 → ( ( 𝑡𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
19 18 adantl ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
20 19 eleq2d ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) ↔ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) )
21 incom ( ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∩ ran 𝑈 ) = ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
22 difss ( ω ∖ 𝑃 ) ⊆ ω
23 ominf ¬ ω ∈ Fin
24 3 ssrab3 𝑃 ⊆ ω
25 undif ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω )
26 24 25 mpbi ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω
27 unfi ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin )
28 26 27 eqeltrrid ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin )
29 28 ex ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) )
30 23 29 mtoi ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin )
31 30 ad2antrr ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( ω ∖ 𝑃 ) ∈ Fin )
32 5 fin23lem22 ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) )
33 22 31 32 sylancr ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) )
34 f1of ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) )
35 33 34 syl ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) )
36 simpr ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ dom 𝑅 )
37 35 fdmd ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → dom 𝑅 = ω )
38 36 37 eleqtrd ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ ω )
39 35 38 ffvelrnd ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅𝑏 ) ∈ ( ω ∖ 𝑃 ) )
40 39 eldifbd ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅𝑏 ) ∈ 𝑃 )
41 3 eleq2i ( ( 𝑅𝑏 ) ∈ 𝑃 ↔ ( 𝑅𝑏 ) ∈ { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) } )
42 40 41 sylnib ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅𝑏 ) ∈ { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) } )
43 39 eldifad ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅𝑏 ) ∈ ω )
44 fveq2 ( 𝑣 = ( 𝑅𝑏 ) → ( 𝑡𝑣 ) = ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
45 44 sseq2d ( 𝑣 = ( 𝑅𝑏 ) → ( ran 𝑈 ⊆ ( 𝑡𝑣 ) ↔ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) )
46 45 elrab3 ( ( 𝑅𝑏 ) ∈ ω → ( ( 𝑅𝑏 ) ∈ { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) } ↔ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) )
47 43 46 syl ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑅𝑏 ) ∈ { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) } ↔ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) )
48 42 47 mtbid ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) )
49 1 fin23lem20 ( ( 𝑅𝑏 ) ∈ ω → ( ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∨ ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) = ∅ ) )
50 43 49 syl ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∨ ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) = ∅ ) )
51 orel1 ( ¬ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) → ( ( ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∨ ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) = ∅ ) → ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) = ∅ ) )
52 48 50 51 sylc ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ) = ∅ )
53 21 52 syl5eq ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∩ ran 𝑈 ) = ∅ )
54 disj ( ( ( 𝑡 ‘ ( 𝑅𝑏 ) ) ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ¬ 𝑎 ran 𝑈 )
55 53 54 sylib ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ¬ 𝑎 ran 𝑈 )
56 rsp ( ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) ¬ 𝑎 ran 𝑈 → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) → ¬ 𝑎 ran 𝑈 ) )
57 55 56 syl ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅𝑏 ) ) → ¬ 𝑎 ran 𝑈 ) )
58 20 57 sylbid ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ran 𝑈 ) )
59 58 ex ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom 𝑅 → ( 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ran 𝑈 ) ) )
60 16 59 syl5 ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom ( 𝑡𝑅 ) → ( 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ran 𝑈 ) ) )
61 60 rexlimdv ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∃ 𝑏 ∈ dom ( 𝑡𝑅 ) 𝑎 ∈ ( ( 𝑡𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ran 𝑈 ) )
62 14 61 sylbid ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ran ( 𝑡𝑅 ) → ¬ 𝑎 ran 𝑈 ) )
63 62 ralrimiv ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ∀ 𝑎 ran ( 𝑡𝑅 ) ¬ 𝑎 ran 𝑈 )
64 disj ( ( ran ( 𝑡𝑅 ) ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ran ( 𝑡𝑅 ) ¬ 𝑎 ran 𝑈 )
65 63 64 sylibr ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ran ( 𝑡𝑅 ) ∩ ran 𝑈 ) = ∅ )
66 rneq ( 𝑍 = ( 𝑡𝑅 ) → ran 𝑍 = ran ( 𝑡𝑅 ) )
67 66 unieqd ( 𝑍 = ( 𝑡𝑅 ) → ran 𝑍 = ran ( 𝑡𝑅 ) )
68 67 ineq1d ( 𝑍 = ( 𝑡𝑅 ) → ( ran 𝑍 ran 𝑈 ) = ( ran ( 𝑡𝑅 ) ∩ ran 𝑈 ) )
69 68 eqeq1d ( 𝑍 = ( 𝑡𝑅 ) → ( ( ran 𝑍 ran 𝑈 ) = ∅ ↔ ( ran ( 𝑡𝑅 ) ∩ ran 𝑈 ) = ∅ ) )
70 65 69 syl5ibr ( 𝑍 = ( 𝑡𝑅 ) → ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ran 𝑍 ran 𝑈 ) = ∅ ) )
71 70 expd ( 𝑍 = ( 𝑡𝑅 ) → ( 𝑃 ∈ Fin → ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ ) ) )
72 71 impcom ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) → ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ ) )
73 rneq ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
74 73 unieqd ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
75 74 ineq1d ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ( ran 𝑍 ran 𝑈 ) = ( ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ran 𝑈 ) )
76 rncoss ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
77 76 unissi ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
78 disj ( ( ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ¬ 𝑎 ran 𝑈 )
79 eluniab ( 𝑎 { 𝑏 ∣ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) } ↔ ∃ 𝑏 ( 𝑎𝑏 ∧ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) )
80 eleq2 ( 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → ( 𝑎𝑏𝑎 ∈ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) )
81 eldifn ( 𝑎 ∈ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → ¬ 𝑎 ran 𝑈 )
82 80 81 syl6bi ( 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → ( 𝑎𝑏 → ¬ 𝑎 ran 𝑈 ) )
83 82 rexlimivw ( ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → ( 𝑎𝑏 → ¬ 𝑎 ran 𝑈 ) )
84 83 impcom ( ( 𝑎𝑏 ∧ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) → ¬ 𝑎 ran 𝑈 )
85 84 exlimiv ( ∃ 𝑏 ( 𝑎𝑏 ∧ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) → ¬ 𝑎 ran 𝑈 )
86 79 85 sylbi ( 𝑎 { 𝑏 ∣ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) } → ¬ 𝑎 ran 𝑈 )
87 eqid ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
88 87 rnmpt ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = { 𝑏 ∣ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) }
89 88 unieqi ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = { 𝑏 ∣ ∃ 𝑧𝑃 𝑏 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) }
90 86 89 eleq2s ( 𝑎 ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) → ¬ 𝑎 ran 𝑈 )
91 78 90 mprgbir ( ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∩ ran 𝑈 ) = ∅
92 ssdisj ( ( ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∧ ( ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∩ ran 𝑈 ) = ∅ ) → ( ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ran 𝑈 ) = ∅ )
93 77 91 92 mp2an ( ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ran 𝑈 ) = ∅
94 75 93 syl6eq ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ( ran 𝑍 ran 𝑈 ) = ∅ )
95 94 a1d ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ ) )
96 95 adantl ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ ) )
97 72 96 jaoi ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ ) )
98 6 8 97 mp2b ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ )