Metamath Proof Explorer


Theorem fnunsn

Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses fnunop.x ( 𝜑𝑋 ∈ V )
fnunop.y ( 𝜑𝑌 ∈ V )
fnunop.f ( 𝜑𝐹 Fn 𝐷 )
fnunop.g 𝐺 = ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } )
fnunop.e 𝐸 = ( 𝐷 ∪ { 𝑋 } )
fnunop.d ( 𝜑 → ¬ 𝑋𝐷 )
Assertion fnunsn ( 𝜑𝐺 Fn 𝐸 )

Proof

Step Hyp Ref Expression
1 fnunop.x ( 𝜑𝑋 ∈ V )
2 fnunop.y ( 𝜑𝑌 ∈ V )
3 fnunop.f ( 𝜑𝐹 Fn 𝐷 )
4 fnunop.g 𝐺 = ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } )
5 fnunop.e 𝐸 = ( 𝐷 ∪ { 𝑋 } )
6 fnunop.d ( 𝜑 → ¬ 𝑋𝐷 )
7 fnsng ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → { ⟨ 𝑋 , 𝑌 ⟩ } Fn { 𝑋 } )
8 1 2 7 syl2anc ( 𝜑 → { ⟨ 𝑋 , 𝑌 ⟩ } Fn { 𝑋 } )
9 disjsn ( ( 𝐷 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋𝐷 )
10 6 9 sylibr ( 𝜑 → ( 𝐷 ∩ { 𝑋 } ) = ∅ )
11 fnun ( ( ( 𝐹 Fn 𝐷 ∧ { ⟨ 𝑋 , 𝑌 ⟩ } Fn { 𝑋 } ) ∧ ( 𝐷 ∩ { 𝑋 } ) = ∅ ) → ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn ( 𝐷 ∪ { 𝑋 } ) )
12 3 8 10 11 syl21anc ( 𝜑 → ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn ( 𝐷 ∪ { 𝑋 } ) )
13 4 fneq1i ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn 𝐸 )
14 5 fneq2i ( ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn 𝐸 ↔ ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn ( 𝐷 ∪ { 𝑋 } ) )
15 13 14 bitri ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) Fn ( 𝐷 ∪ { 𝑋 } ) )
16 12 15 sylibr ( 𝜑𝐺 Fn 𝐸 )