Metamath Proof Explorer


Theorem fodomr

Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion fodomr ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∃ 𝑓 𝑓 : 𝐴onto𝐵 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex2i ( 𝐵𝐴𝐴 ∈ V )
3 2 adantl ( ( ∅ ≺ 𝐵𝐵𝐴 ) → 𝐴 ∈ V )
4 1 brrelex1i ( 𝐵𝐴𝐵 ∈ V )
5 0sdomg ( 𝐵 ∈ V → ( ∅ ≺ 𝐵𝐵 ≠ ∅ ) )
6 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐵 )
7 5 6 syl6bb ( 𝐵 ∈ V → ( ∅ ≺ 𝐵 ↔ ∃ 𝑧 𝑧𝐵 ) )
8 4 7 syl ( 𝐵𝐴 → ( ∅ ≺ 𝐵 ↔ ∃ 𝑧 𝑧𝐵 ) )
9 8 biimpac ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∃ 𝑧 𝑧𝐵 )
10 brdomi ( 𝐵𝐴 → ∃ 𝑔 𝑔 : 𝐵1-1𝐴 )
11 10 adantl ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∃ 𝑔 𝑔 : 𝐵1-1𝐴 )
12 difexg ( 𝐴 ∈ V → ( 𝐴 ∖ ran 𝑔 ) ∈ V )
13 snex { 𝑧 } ∈ V
14 xpexg ( ( ( 𝐴 ∖ ran 𝑔 ) ∈ V ∧ { 𝑧 } ∈ V ) → ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ∈ V )
15 12 13 14 sylancl ( 𝐴 ∈ V → ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ∈ V )
16 vex 𝑔 ∈ V
17 16 cnvex 𝑔 ∈ V
18 15 17 jctil ( 𝐴 ∈ V → ( 𝑔 ∈ V ∧ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ∈ V ) )
19 unexb ( ( 𝑔 ∈ V ∧ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ∈ V ) ↔ ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) ∈ V )
20 18 19 sylib ( 𝐴 ∈ V → ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) ∈ V )
21 df-f1 ( 𝑔 : 𝐵1-1𝐴 ↔ ( 𝑔 : 𝐵𝐴 ∧ Fun 𝑔 ) )
22 21 simprbi ( 𝑔 : 𝐵1-1𝐴 → Fun 𝑔 )
23 vex 𝑧 ∈ V
24 23 fconst ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) : ( 𝐴 ∖ ran 𝑔 ) ⟶ { 𝑧 }
25 ffun ( ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) : ( 𝐴 ∖ ran 𝑔 ) ⟶ { 𝑧 } → Fun ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) )
26 24 25 ax-mp Fun ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } )
27 22 26 jctir ( 𝑔 : 𝐵1-1𝐴 → ( Fun 𝑔 ∧ Fun ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) )
28 df-rn ran 𝑔 = dom 𝑔
29 28 eqcomi dom 𝑔 = ran 𝑔
30 23 snnz { 𝑧 } ≠ ∅
31 dmxp ( { 𝑧 } ≠ ∅ → dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ( 𝐴 ∖ ran 𝑔 ) )
32 30 31 ax-mp dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ( 𝐴 ∖ ran 𝑔 )
33 29 32 ineq12i ( dom 𝑔 ∩ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( ran 𝑔 ∩ ( 𝐴 ∖ ran 𝑔 ) )
34 disjdif ( ran 𝑔 ∩ ( 𝐴 ∖ ran 𝑔 ) ) = ∅
35 33 34 eqtri ( dom 𝑔 ∩ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ∅
36 funun ( ( ( Fun 𝑔 ∧ Fun ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) ∧ ( dom 𝑔 ∩ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ∅ ) → Fun ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) )
37 27 35 36 sylancl ( 𝑔 : 𝐵1-1𝐴 → Fun ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) )
38 37 adantl ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → Fun ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) )
39 dmun dom ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( dom 𝑔 ∪ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) )
40 28 uneq1i ( ran 𝑔 ∪ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( dom 𝑔 ∪ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) )
41 32 uneq2i ( ran 𝑔 ∪ dom ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( ran 𝑔 ∪ ( 𝐴 ∖ ran 𝑔 ) )
42 39 40 41 3eqtr2i dom ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( ran 𝑔 ∪ ( 𝐴 ∖ ran 𝑔 ) )
43 f1f ( 𝑔 : 𝐵1-1𝐴𝑔 : 𝐵𝐴 )
44 43 frnd ( 𝑔 : 𝐵1-1𝐴 → ran 𝑔𝐴 )
45 undif ( ran 𝑔𝐴 ↔ ( ran 𝑔 ∪ ( 𝐴 ∖ ran 𝑔 ) ) = 𝐴 )
46 44 45 sylib ( 𝑔 : 𝐵1-1𝐴 → ( ran 𝑔 ∪ ( 𝐴 ∖ ran 𝑔 ) ) = 𝐴 )
47 42 46 syl5eq ( 𝑔 : 𝐵1-1𝐴 → dom ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐴 )
48 47 adantl ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → dom ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐴 )
49 df-fn ( ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) Fn 𝐴 ↔ ( Fun ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) ∧ dom ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐴 ) )
50 38 48 49 sylanbrc ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) Fn 𝐴 )
51 rnun ran ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( ran 𝑔 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) )
52 dfdm4 dom 𝑔 = ran 𝑔
53 f1dm ( 𝑔 : 𝐵1-1𝐴 → dom 𝑔 = 𝐵 )
54 52 53 syl5eqr ( 𝑔 : 𝐵1-1𝐴 → ran 𝑔 = 𝐵 )
55 54 uneq1d ( 𝑔 : 𝐵1-1𝐴 → ( ran 𝑔 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = ( 𝐵 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) )
56 xpeq1 ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ( ∅ × { 𝑧 } ) )
57 0xp ( ∅ × { 𝑧 } ) = ∅
58 56 57 syl6eq ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ∅ )
59 58 rneqd ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ran ∅ )
60 rn0 ran ∅ = ∅
61 59 60 syl6eq ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = ∅ )
62 0ss ∅ ⊆ 𝐵
63 61 62 eqsstrdi ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 )
64 63 a1d ( ( 𝐴 ∖ ran 𝑔 ) = ∅ → ( 𝑧𝐵 → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 ) )
65 rnxp ( ( 𝐴 ∖ ran 𝑔 ) ≠ ∅ → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = { 𝑧 } )
66 65 adantr ( ( ( 𝐴 ∖ ran 𝑔 ) ≠ ∅ ∧ 𝑧𝐵 ) → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) = { 𝑧 } )
67 snssi ( 𝑧𝐵 → { 𝑧 } ⊆ 𝐵 )
68 67 adantl ( ( ( 𝐴 ∖ ran 𝑔 ) ≠ ∅ ∧ 𝑧𝐵 ) → { 𝑧 } ⊆ 𝐵 )
69 66 68 eqsstrd ( ( ( 𝐴 ∖ ran 𝑔 ) ≠ ∅ ∧ 𝑧𝐵 ) → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 )
70 69 ex ( ( 𝐴 ∖ ran 𝑔 ) ≠ ∅ → ( 𝑧𝐵 → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 ) )
71 64 70 pm2.61ine ( 𝑧𝐵 → ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 )
72 ssequn2 ( ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ⊆ 𝐵 ↔ ( 𝐵 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐵 )
73 71 72 sylib ( 𝑧𝐵 → ( 𝐵 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐵 )
74 55 73 sylan9eqr ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → ( ran 𝑔 ∪ ran ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐵 )
75 51 74 syl5eq ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → ran ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐵 )
76 df-fo ( ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) : 𝐴onto𝐵 ↔ ( ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) Fn 𝐴 ∧ ran ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) = 𝐵 ) )
77 50 75 76 sylanbrc ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) : 𝐴onto𝐵 )
78 foeq1 ( 𝑓 = ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) → ( 𝑓 : 𝐴onto𝐵 ↔ ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) : 𝐴onto𝐵 ) )
79 78 spcegv ( ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) ∈ V → ( ( 𝑔 ∪ ( ( 𝐴 ∖ ran 𝑔 ) × { 𝑧 } ) ) : 𝐴onto𝐵 → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) )
80 20 77 79 syl2im ( 𝐴 ∈ V → ( ( 𝑧𝐵𝑔 : 𝐵1-1𝐴 ) → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) )
81 80 expdimp ( ( 𝐴 ∈ V ∧ 𝑧𝐵 ) → ( 𝑔 : 𝐵1-1𝐴 → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) )
82 81 exlimdv ( ( 𝐴 ∈ V ∧ 𝑧𝐵 ) → ( ∃ 𝑔 𝑔 : 𝐵1-1𝐴 → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) )
83 82 ex ( 𝐴 ∈ V → ( 𝑧𝐵 → ( ∃ 𝑔 𝑔 : 𝐵1-1𝐴 → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) ) )
84 83 exlimdv ( 𝐴 ∈ V → ( ∃ 𝑧 𝑧𝐵 → ( ∃ 𝑔 𝑔 : 𝐵1-1𝐴 → ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) ) )
85 3 9 11 84 syl3c ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∃ 𝑓 𝑓 : 𝐴onto𝐵 )