Metamath Proof Explorer


Theorem fprod1p

Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)

Ref Expression
Hypotheses fprod1p.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
fprod1p.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ )
fprod1p.3 ( 𝑘 = 𝑀𝐴 = 𝐵 )
Assertion fprod1p ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fprod1p.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 fprod1p.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ )
3 fprod1p.3 ( 𝑘 = 𝑀𝐴 = 𝐵 )
4 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
5 1 4 syl ( 𝜑𝑀 ∈ ( 𝑀 ... 𝑁 ) )
6 elfzelz ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ )
7 5 6 syl ( 𝜑𝑀 ∈ ℤ )
8 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
9 7 8 syl ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
10 9 ineq1d ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
11 7 zred ( 𝜑𝑀 ∈ ℝ )
12 11 ltp1d ( 𝜑𝑀 < ( 𝑀 + 1 ) )
13 fzdisj ( 𝑀 < ( 𝑀 + 1 ) → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ )
14 12 13 syl ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ )
15 10 14 eqtr3d ( 𝜑 → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ )
16 fzsplit ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
17 5 16 syl ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
18 9 uneq1d ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
19 17 18 eqtrd ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
20 fzfid ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin )
21 15 19 20 2 fprodsplit ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) )
22 3 eleq1d ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) )
23 2 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ )
24 22 23 5 rspcdva ( 𝜑𝐵 ∈ ℂ )
25 3 prodsn ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )
26 5 24 25 syl2anc ( 𝜑 → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )
27 26 oveq1d ( 𝜑 → ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) )
28 21 27 eqtrd ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) )