Metamath Proof Explorer


Theorem fpwwe2

Description: Given any function F from well-orderings of subsets of A to A , there is a unique well-ordered subset <. X , ( WX ) >. which "agrees" with F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a . Theorem 1.1 of KanamoriPincus p. 415. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
fpwwe2.2 ( 𝜑𝐴 ∈ V )
fpwwe2.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
fpwwe2.4 𝑋 = dom 𝑊
Assertion fpwwe2 ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
2 fpwwe2.2 ( 𝜑𝐴 ∈ V )
3 fpwwe2.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
4 fpwwe2.4 𝑋 = dom 𝑊
5 1 2 3 4 fpwwe2lem11 ( 𝜑𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) )
6 5 ffund ( 𝜑 → Fun 𝑊 )
7 funbrfv2b ( Fun 𝑊 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊𝑌 ) = 𝑅 ) ) )
8 6 7 syl ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊𝑌 ) = 𝑅 ) ) )
9 8 simprbda ( ( 𝜑𝑌 𝑊 𝑅 ) → 𝑌 ∈ dom 𝑊 )
10 9 adantrr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ∈ dom 𝑊 )
11 elssuni ( 𝑌 ∈ dom 𝑊𝑌 dom 𝑊 )
12 11 4 sseqtrrdi ( 𝑌 ∈ dom 𝑊𝑌𝑋 )
13 10 12 syl ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌𝑋 )
14 simpl ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋𝑌 )
15 14 a1i ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋𝑌 ) )
16 simplrr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 )
17 2 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝐴 ∈ V )
18 17 adantr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝐴 ∈ V )
19 1 2 3 4 fpwwe2lem12 ( 𝜑𝑋 ∈ dom 𝑊 )
20 funfvbrb ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊𝑋 𝑊 ( 𝑊𝑋 ) ) )
21 6 20 syl ( 𝜑 → ( 𝑋 ∈ dom 𝑊𝑋 𝑊 ( 𝑊𝑋 ) ) )
22 19 21 mpbid ( 𝜑𝑋 𝑊 ( 𝑊𝑋 ) )
23 1 2 fpwwe2lem2 ( 𝜑 → ( 𝑋 𝑊 ( 𝑊𝑋 ) ↔ ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) )
24 22 23 mpbid ( 𝜑 → ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
25 24 ad2antrr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
26 25 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) )
27 26 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋𝐴 )
28 18 27 ssexd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ∈ V )
29 difexg ( 𝑋 ∈ V → ( 𝑋𝑌 ) ∈ V )
30 28 29 syl ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) ∈ V )
31 25 simprd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) )
32 31 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) We 𝑋 )
33 wefr ( ( 𝑊𝑋 ) We 𝑋 → ( 𝑊𝑋 ) Fr 𝑋 )
34 32 33 syl ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) Fr 𝑋 )
35 difssd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) ⊆ 𝑋 )
36 fri ( ( ( ( 𝑋𝑌 ) ∈ V ∧ ( 𝑊𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑋𝑌 ) ⊆ 𝑋 ∧ ( 𝑋𝑌 ) ≠ ∅ ) ) → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
37 36 expr ( ( ( ( 𝑋𝑌 ) ∈ V ∧ ( 𝑊𝑋 ) Fr 𝑋 ) ∧ ( 𝑋𝑌 ) ⊆ 𝑋 ) → ( ( 𝑋𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
38 30 34 35 37 syl21anc ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
39 ssdif0 ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ )
40 indif1 ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 )
41 40 eqeq1i ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ )
42 disj ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
43 vex 𝑤 ∈ V
44 43 eliniseg ( 𝑧 ∈ V → ( 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
45 44 elv ( 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊𝑋 ) 𝑧 )
46 45 notbii ( ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
47 46 ralbii ( ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
48 42 47 bitri ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
49 39 41 48 3bitr2i ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
50 cnvimass ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ dom ( 𝑊𝑋 )
51 26 simprd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) )
52 dmss ( ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) )
53 51 52 syl ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) )
54 dmxpid dom ( 𝑋 × 𝑋 ) = 𝑋
55 53 54 sseqtrdi ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊𝑋 ) ⊆ 𝑋 )
56 50 55 sstrid ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 )
57 sseqin2 ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
58 56 57 sylib ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
59 58 sseq1d ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
60 49 59 syl5bbr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
61 60 rexbidv ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋𝑌 ) ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
62 eldifn ( 𝑧 ∈ ( 𝑋𝑌 ) → ¬ 𝑧𝑌 )
63 62 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ 𝑧𝑌 )
64 eleq1w ( 𝑤 = 𝑧 → ( 𝑤𝑌𝑧𝑌 ) )
65 64 notbid ( 𝑤 = 𝑧 → ( ¬ 𝑤𝑌 ↔ ¬ 𝑧𝑌 ) )
66 63 65 syl5ibrcom ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 = 𝑧 → ¬ 𝑤𝑌 ) )
67 66 con2d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤𝑌 → ¬ 𝑤 = 𝑧 ) )
68 67 imp ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑤 = 𝑧 )
69 63 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑧𝑌 )
70 simprr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
71 70 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
72 71 breqd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ) )
73 eldifi ( 𝑧 ∈ ( 𝑋𝑌 ) → 𝑧𝑋 )
74 73 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑧𝑋 )
75 74 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑧𝑋 )
76 simpr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤𝑌 )
77 brxp ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ↔ ( 𝑧𝑋𝑤𝑌 ) )
78 75 76 77 sylanbrc ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑧 ( 𝑋 × 𝑌 ) 𝑤 )
79 brin ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ ( 𝑧 ( 𝑊𝑋 ) 𝑤𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) )
80 79 rbaib ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 → ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
81 78 80 syl ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
82 72 81 bitrd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
83 1 2 fpwwe2lem2 ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) )
84 83 biimpa ( ( 𝜑𝑌 𝑊 𝑅 ) → ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
85 84 adantrr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
86 85 simpld ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) )
87 86 simprd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
88 87 ad5ant12 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
89 88 ssbrd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( 𝑌 × 𝑌 ) 𝑤 ) )
90 brxp ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ↔ ( 𝑧𝑌𝑤𝑌 ) )
91 90 simplbi ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤𝑧𝑌 )
92 89 91 syl6 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧𝑌 ) )
93 82 92 sylbird ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 ( 𝑊𝑋 ) 𝑤𝑧𝑌 ) )
94 69 93 mtod ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 )
95 32 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑊𝑋 ) We 𝑋 )
96 weso ( ( 𝑊𝑋 ) We 𝑋 → ( 𝑊𝑋 ) Or 𝑋 )
97 95 96 syl ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑊𝑋 ) Or 𝑋 )
98 13 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌𝑋 )
99 98 sselda ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤𝑋 )
100 sotric ( ( ( 𝑊𝑋 ) Or 𝑋 ∧ ( 𝑤𝑋𝑧𝑋 ) ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ¬ ( 𝑤 = 𝑧𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
101 ioran ( ¬ ( 𝑤 = 𝑧𝑧 ( 𝑊𝑋 ) 𝑤 ) ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) )
102 100 101 syl6bb ( ( ( 𝑊𝑋 ) Or 𝑋 ∧ ( 𝑤𝑋𝑧𝑋 ) ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
103 97 99 75 102 syl12anc ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
104 68 94 103 mpbir2and ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤 ( 𝑊𝑋 ) 𝑧 )
105 104 45 sylibr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
106 105 ex ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤𝑌𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) )
107 106 ssrdv ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
108 simprr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 )
109 107 108 eqssd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
110 in32 ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) )
111 simplrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
112 111 ineq1d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) )
113 87 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
114 df-ss ( 𝑅 ⊆ ( 𝑌 × 𝑌 ) ↔ ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
115 113 114 sylib ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
116 112 115 eqtr3d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
117 inss2 ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑌 × 𝑌 )
118 xpss1 ( 𝑌𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
119 98 118 syl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
120 117 119 sstrid ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) )
121 df-ss ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ↔ ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
122 120 121 sylib ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
123 110 116 122 3eqtr3a ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
124 109 sqxpeqd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) = ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) )
125 124 ineq2d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) )
126 123 125 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) )
127 109 126 oveq12d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) )
128 18 adantr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝐴 ∈ V )
129 22 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊𝑋 ) )
130 129 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊𝑋 ) )
131 1 128 130 fpwwe2lem3 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑧𝑋 ) → ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 )
132 74 131 mpdan ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 )
133 127 132 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = 𝑧 )
134 133 63 eqneltrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 )
135 134 rexlimdvaa ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
136 61 135 sylbid ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
137 38 136 syld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝑌 ) ≠ ∅ → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
138 137 necon4ad ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 → ( 𝑋𝑌 ) = ∅ ) )
139 16 138 mpd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) = ∅ )
140 ssdif0 ( 𝑋𝑌 ↔ ( 𝑋𝑌 ) = ∅ )
141 139 140 sylibr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋𝑌 )
142 141 ex ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) → 𝑋𝑌 ) )
143 3 adantlr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
144 simprl ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 𝑊 𝑅 )
145 1 17 143 129 144 fpwwe2lem10 ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) )
146 15 142 145 mpjaod ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋𝑌 )
147 13 146 eqssd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 = 𝑋 )
148 6 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → Fun 𝑊 )
149 147 144 eqbrtrrd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 𝑅 )
150 funbrfv ( Fun 𝑊 → ( 𝑋 𝑊 𝑅 → ( 𝑊𝑋 ) = 𝑅 ) )
151 148 149 150 sylc ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑊𝑋 ) = 𝑅 )
152 151 eqcomd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 = ( 𝑊𝑋 ) )
153 147 152 jca ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) )
154 153 ex ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) → ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )
155 1 2 3 4 fpwwe2lem13 ( 𝜑 → ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 )
156 22 155 jca ( 𝜑 → ( 𝑋 𝑊 ( 𝑊𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) )
157 breq12 ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝑊 𝑅𝑋 𝑊 ( 𝑊𝑋 ) ) )
158 oveq12 ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝐹 𝑅 ) = ( 𝑋 𝐹 ( 𝑊𝑋 ) ) )
159 simpl ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → 𝑌 = 𝑋 )
160 158 159 eleq12d ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ↔ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) )
161 157 160 anbi12d ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑋 𝑊 ( 𝑊𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) ) )
162 156 161 syl5ibrcom ( 𝜑 → ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) )
163 154 162 impbid ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )