Metamath Proof Explorer


Theorem fr0

Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion fr0 𝑅 Fr ∅

Proof

Step Hyp Ref Expression
1 dffr2 ( 𝑅 Fr ∅ ↔ ∀ 𝑥 ( ( 𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) )
2 ss0 ( 𝑥 ⊆ ∅ → 𝑥 = ∅ )
3 2 a1d ( 𝑥 ⊆ ∅ → ( ¬ ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ → 𝑥 = ∅ ) )
4 3 necon1ad ( 𝑥 ⊆ ∅ → ( 𝑥 ≠ ∅ → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) )
5 4 imp ( ( 𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ )
6 1 5 mpgbir 𝑅 Fr ∅