Metamath Proof Explorer


Theorem fresaunres1

Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Assertion fresaunres1 ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( ( 𝐹𝐺 ) ↾ 𝐴 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 uncom ( 𝐹𝐺 ) = ( 𝐺𝐹 )
2 1 reseq1i ( ( 𝐹𝐺 ) ↾ 𝐴 ) = ( ( 𝐺𝐹 ) ↾ 𝐴 )
3 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
4 3 reseq2i ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐵𝐴 ) )
5 3 reseq2i ( 𝐺 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐵𝐴 ) )
6 4 5 eqeq12i ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐵𝐴 ) ) = ( 𝐺 ↾ ( 𝐵𝐴 ) ) )
7 eqcom ( ( 𝐹 ↾ ( 𝐵𝐴 ) ) = ( 𝐺 ↾ ( 𝐵𝐴 ) ) ↔ ( 𝐺 ↾ ( 𝐵𝐴 ) ) = ( 𝐹 ↾ ( 𝐵𝐴 ) ) )
8 6 7 bitri ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ↔ ( 𝐺 ↾ ( 𝐵𝐴 ) ) = ( 𝐹 ↾ ( 𝐵𝐴 ) ) )
9 fresaunres2 ( ( 𝐺 : 𝐵𝐶𝐹 : 𝐴𝐶 ∧ ( 𝐺 ↾ ( 𝐵𝐴 ) ) = ( 𝐹 ↾ ( 𝐵𝐴 ) ) ) → ( ( 𝐺𝐹 ) ↾ 𝐴 ) = 𝐹 )
10 9 3com12 ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ∧ ( 𝐺 ↾ ( 𝐵𝐴 ) ) = ( 𝐹 ↾ ( 𝐵𝐴 ) ) ) → ( ( 𝐺𝐹 ) ↾ 𝐴 ) = 𝐹 )
11 8 10 syl3an3b ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( ( 𝐺𝐹 ) ↾ 𝐴 ) = 𝐹 )
12 2 11 syl5eq ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( ( 𝐹𝐺 ) ↾ 𝐴 ) = 𝐹 )