Metamath Proof Explorer


Theorem frnsuppeq

Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Assertion frnsuppeq ( ( 𝐼𝑉𝑍𝑊 ) → ( 𝐹 : 𝐼𝑆 → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) )

Proof

Step Hyp Ref Expression
1 fex ( ( 𝐹 : 𝐼𝑆𝐼𝑉 ) → 𝐹 ∈ V )
2 1 expcom ( 𝐼𝑉 → ( 𝐹 : 𝐼𝑆𝐹 ∈ V ) )
3 2 adantr ( ( 𝐼𝑉𝑍𝑊 ) → ( 𝐹 : 𝐼𝑆𝐹 ∈ V ) )
4 3 imp ( ( ( 𝐼𝑉𝑍𝑊 ) ∧ 𝐹 : 𝐼𝑆 ) → 𝐹 ∈ V )
5 simplr ( ( ( 𝐼𝑉𝑍𝑊 ) ∧ 𝐹 : 𝐼𝑆 ) → 𝑍𝑊 )
6 suppimacnv ( ( 𝐹 ∈ V ∧ 𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
7 4 5 6 syl2anc ( ( ( 𝐼𝑉𝑍𝑊 ) ∧ 𝐹 : 𝐼𝑆 ) → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
8 invdif ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) = ( 𝑆 ∖ { 𝑍 } )
9 8 imaeq2i ( 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) )
10 ffun ( 𝐹 : 𝐼𝑆 → Fun 𝐹 )
11 inpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( 𝐹𝑆 ) ∩ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) )
12 10 11 syl ( 𝐹 : 𝐼𝑆 → ( 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( 𝐹𝑆 ) ∩ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) )
13 cnvimass ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ dom 𝐹
14 fdm ( 𝐹 : 𝐼𝑆 → dom 𝐹 = 𝐼 )
15 fimacnv ( 𝐹 : 𝐼𝑆 → ( 𝐹𝑆 ) = 𝐼 )
16 14 15 eqtr4d ( 𝐹 : 𝐼𝑆 → dom 𝐹 = ( 𝐹𝑆 ) )
17 13 16 sseqtrid ( 𝐹 : 𝐼𝑆 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( 𝐹𝑆 ) )
18 sseqin2 ( ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( 𝐹𝑆 ) ↔ ( ( 𝐹𝑆 ) ∩ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
19 17 18 sylib ( 𝐹 : 𝐼𝑆 → ( ( 𝐹𝑆 ) ∩ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
20 12 19 eqtrd ( 𝐹 : 𝐼𝑆 → ( 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
21 9 20 syl5reqr ( 𝐹 : 𝐼𝑆 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) )
22 21 adantl ( ( ( 𝐼𝑉𝑍𝑊 ) ∧ 𝐹 : 𝐼𝑆 ) → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) )
23 7 22 eqtrd ( ( ( 𝐼𝑉𝑍𝑊 ) ∧ 𝐹 : 𝐼𝑆 ) → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) )
24 23 ex ( ( 𝐼𝑉𝑍𝑊 ) → ( 𝐹 : 𝐼𝑆 → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) )