Metamath Proof Explorer


Theorem fsumiun

Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015) (Revised by Mario Carneiro, 10-Dec-2016)

Ref Expression
Hypotheses fsumiun.1 ( 𝜑𝐴 ∈ Fin )
fsumiun.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ Fin )
fsumiun.3 ( 𝜑Disj 𝑥𝐴 𝐵 )
fsumiun.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
Assertion fsumiun ( 𝜑 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 fsumiun.1 ( 𝜑𝐴 ∈ Fin )
2 fsumiun.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ Fin )
3 fsumiun.3 ( 𝜑Disj 𝑥𝐴 𝐵 )
4 fsumiun.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
5 ssid 𝐴𝐴
6 sseq1 ( 𝑢 = ∅ → ( 𝑢𝐴 ↔ ∅ ⊆ 𝐴 ) )
7 iuneq1 ( 𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵 )
8 0iun 𝑥 ∈ ∅ 𝐵 = ∅
9 7 8 syl6eq ( 𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅ )
10 9 sumeq1d ( 𝑢 = ∅ → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 )
11 sumeq1 ( 𝑢 = ∅ → Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 )
12 10 11 eqeq12d ( 𝑢 = ∅ → ( Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ↔ Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 ) )
13 6 12 imbi12d ( 𝑢 = ∅ → ( ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ↔ ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 ) ) )
14 13 imbi2d ( 𝑢 = ∅ → ( ( 𝜑 → ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 ) ) ) )
15 sseq1 ( 𝑢 = 𝑧 → ( 𝑢𝐴𝑧𝐴 ) )
16 iuneq1 ( 𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵 )
17 16 sumeq1d ( 𝑢 = 𝑧 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑘 𝑥𝑧 𝐵 𝐶 )
18 sumeq1 ( 𝑢 = 𝑧 → Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 )
19 17 18 eqeq12d ( 𝑢 = 𝑧 → ( Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ↔ Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) )
20 15 19 imbi12d ( 𝑢 = 𝑧 → ( ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ↔ ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) ) )
21 20 imbi2d ( 𝑢 = 𝑧 → ( ( 𝜑 → ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) ) ) )
22 sseq1 ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑢𝐴 ↔ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) )
23 iuneq1 ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → 𝑥𝑢 𝐵 = 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 )
24 23 sumeq1d ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 )
25 sumeq1 ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 )
26 24 25 eqeq12d ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ↔ Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) )
27 22 26 imbi12d ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ↔ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) )
28 27 imbi2d ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝜑 → ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) ) )
29 sseq1 ( 𝑢 = 𝐴 → ( 𝑢𝐴𝐴𝐴 ) )
30 iuneq1 ( 𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵 )
31 30 sumeq1d ( 𝑢 = 𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑘 𝑥𝐴 𝐵 𝐶 )
32 sumeq1 ( 𝑢 = 𝐴 → Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )
33 31 32 eqeq12d ( 𝑢 = 𝐴 → ( Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ↔ Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ) )
34 29 33 imbi12d ( 𝑢 = 𝐴 → ( ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ↔ ( 𝐴𝐴 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ) ) )
35 34 imbi2d ( 𝑢 = 𝐴 → ( ( 𝜑 → ( 𝑢𝐴 → Σ 𝑘 𝑥𝑢 𝐵 𝐶 = Σ 𝑥𝑢 Σ 𝑘𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝐴𝐴 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ) ) ) )
36 sum0 Σ 𝑘 ∈ ∅ 𝐶 = 0
37 sum0 Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 = 0
38 36 37 eqtr4i Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶
39 38 2a1i ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘𝐵 𝐶 ) )
40 id ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 )
41 40 unssad ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴𝑧𝐴 )
42 41 imim1i ( ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) )
43 oveq1 ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 → ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) = ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) )
44 nfcv 𝑧 𝐵
45 nfcsb1v 𝑥 𝑧 / 𝑥 𝐵
46 csbeq1a ( 𝑥 = 𝑧𝐵 = 𝑧 / 𝑥 𝐵 )
47 44 45 46 cbviun 𝑥 ∈ { 𝑤 } 𝐵 = 𝑧 ∈ { 𝑤 } 𝑧 / 𝑥 𝐵
48 vex 𝑤 ∈ V
49 csbeq1 ( 𝑧 = 𝑤 𝑧 / 𝑥 𝐵 = 𝑤 / 𝑥 𝐵 )
50 48 49 iunxsn 𝑧 ∈ { 𝑤 } 𝑧 / 𝑥 𝐵 = 𝑤 / 𝑥 𝐵
51 47 50 eqtri 𝑥 ∈ { 𝑤 } 𝐵 = 𝑤 / 𝑥 𝐵
52 51 ineq2i ( 𝑥𝑧 𝐵 𝑥 ∈ { 𝑤 } 𝐵 ) = ( 𝑥𝑧 𝐵 𝑤 / 𝑥 𝐵 )
53 3 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Disj 𝑥𝐴 𝐵 )
54 41 adantl ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑧𝐴 )
55 simpr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 )
56 55 unssbd ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → { 𝑤 } ⊆ 𝐴 )
57 simplr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ¬ 𝑤𝑧 )
58 disjsn ( ( 𝑧 ∩ { 𝑤 } ) = ∅ ↔ ¬ 𝑤𝑧 )
59 57 58 sylibr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ )
60 disjiun ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑧𝐴 ∧ { 𝑤 } ⊆ 𝐴 ∧ ( 𝑧 ∩ { 𝑤 } ) = ∅ ) ) → ( 𝑥𝑧 𝐵 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ )
61 53 54 56 59 60 syl13anc ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑥𝑧 𝐵 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ )
62 52 61 syl5eqr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑥𝑧 𝐵 𝑤 / 𝑥 𝐵 ) = ∅ )
63 iunxun 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ { 𝑤 } 𝐵 )
64 51 uneq2i ( 𝑥𝑧 𝐵 𝑥 ∈ { 𝑤 } 𝐵 ) = ( 𝑥𝑧 𝐵 𝑤 / 𝑥 𝐵 )
65 63 64 eqtri 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( 𝑥𝑧 𝐵 𝑤 / 𝑥 𝐵 )
66 65 a1i ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( 𝑥𝑧 𝐵 𝑤 / 𝑥 𝐵 ) )
67 1 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin )
68 67 55 ssfid ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ∈ Fin )
69 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 ∈ Fin )
70 69 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥𝐴 𝐵 ∈ Fin )
71 ssralv ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( ∀ 𝑥𝐴 𝐵 ∈ Fin → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) )
72 55 70 71 sylc ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin )
73 iunfi ( ( ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) → 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin )
74 68 72 73 syl2anc ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin )
75 iunss1 ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝑥𝐴 𝐵 )
76 75 adantl ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝑥𝐴 𝐵 )
77 76 sselda ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝑘 𝑥𝐴 𝐵 )
78 eliun ( 𝑘 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑘𝐵 )
79 4 rexlimdvaa ( 𝜑 → ( ∃ 𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ ) )
80 79 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∃ 𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ ) )
81 78 80 syl5bi ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ ) )
82 81 imp ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 𝑥𝐴 𝐵 ) → 𝐶 ∈ ℂ )
83 77 82 syldan ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝐶 ∈ ℂ )
84 62 66 74 83 fsumsplit ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) )
85 eqidd ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) = ( 𝑧 ∪ { 𝑤 } ) )
86 55 sselda ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝑥𝐴 )
87 4 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
88 2 87 fsumcl ( ( 𝜑𝑥𝐴 ) → Σ 𝑘𝐵 𝐶 ∈ ℂ )
89 88 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ∈ ℂ )
90 89 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ∈ ℂ )
91 90 r19.21bi ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥𝐴 ) → Σ 𝑘𝐵 𝐶 ∈ ℂ )
92 86 91 syldan ( ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → Σ 𝑘𝐵 𝐶 ∈ ℂ )
93 59 85 68 92 fsumsplit ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 = ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘𝐵 𝐶 ) )
94 nfcv 𝑧 Σ 𝑘𝐵 𝐶
95 nfcv 𝑥 𝐶
96 45 95 nfsumw 𝑥 Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶
97 46 sumeq1d ( 𝑥 = 𝑧 → Σ 𝑘𝐵 𝐶 = Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶 )
98 94 96 97 cbvsumi Σ 𝑥 ∈ { 𝑤 } Σ 𝑘𝐵 𝐶 = Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶
99 48 snss ( 𝑤𝐴 ↔ { 𝑤 } ⊆ 𝐴 )
100 56 99 sylibr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑤𝐴 )
101 nfcsb1v 𝑥 𝑤 / 𝑥 𝐵
102 101 95 nfsumw 𝑥 Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶
103 102 nfel1 𝑥 Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ∈ ℂ
104 csbeq1a ( 𝑥 = 𝑤𝐵 = 𝑤 / 𝑥 𝐵 )
105 104 sumeq1d ( 𝑥 = 𝑤 → Σ 𝑘𝐵 𝐶 = Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 )
106 105 eleq1d ( 𝑥 = 𝑤 → ( Σ 𝑘𝐵 𝐶 ∈ ℂ ↔ Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ∈ ℂ ) )
107 103 106 rspc ( 𝑤𝐴 → ( ∀ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ∈ ℂ → Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ∈ ℂ ) )
108 100 90 107 sylc ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ∈ ℂ )
109 49 sumeq1d ( 𝑧 = 𝑤 → Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶 = Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 )
110 109 sumsn ( ( 𝑤 ∈ V ∧ Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ∈ ℂ ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶 = Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 )
111 48 108 110 sylancr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 𝑧 / 𝑥 𝐵 𝐶 = Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 )
112 98 111 syl5eq ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ { 𝑤 } Σ 𝑘𝐵 𝐶 = Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 )
113 112 oveq2d ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘𝐵 𝐶 ) = ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) )
114 93 113 eqtrd ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 = ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) )
115 84 114 eqeq12d ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ↔ ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) = ( Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 + Σ 𝑘 𝑤 / 𝑥 𝐵 𝐶 ) ) )
116 43 115 syl5ibr ( ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) )
117 116 ex ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) )
118 117 a2d ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) → ( ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) )
119 42 118 syl5 ( ( 𝜑 ∧ ¬ 𝑤𝑧 ) → ( ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) )
120 119 expcom ( ¬ 𝑤𝑧 → ( 𝜑 → ( ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) ) )
121 120 a2d ( ¬ 𝑤𝑧 → ( ( 𝜑 → ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) ) )
122 121 adantl ( ( 𝑧 ∈ Fin ∧ ¬ 𝑤𝑧 ) → ( ( 𝜑 → ( 𝑧𝐴 → Σ 𝑘 𝑥𝑧 𝐵 𝐶 = Σ 𝑥𝑧 Σ 𝑘𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘𝐵 𝐶 ) ) ) )
123 14 21 28 35 39 122 findcard2s ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴𝐴 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ) ) )
124 1 123 mpcom ( 𝜑 → ( 𝐴𝐴 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 ) )
125 5 124 mpi ( 𝜑 → Σ 𝑘 𝑥𝐴 𝐵 𝐶 = Σ 𝑥𝐴 Σ 𝑘𝐵 𝐶 )