Metamath Proof Explorer


Theorem fsumlt

Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumlt.1 ( 𝜑𝐴 ∈ Fin )
fsumlt.2 ( 𝜑𝐴 ≠ ∅ )
fsumlt.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
fsumlt.4 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℝ )
fsumlt.5 ( ( 𝜑𝑘𝐴 ) → 𝐵 < 𝐶 )
Assertion fsumlt ( 𝜑 → Σ 𝑘𝐴 𝐵 < Σ 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 fsumlt.1 ( 𝜑𝐴 ∈ Fin )
2 fsumlt.2 ( 𝜑𝐴 ≠ ∅ )
3 fsumlt.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
4 fsumlt.4 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℝ )
5 fsumlt.5 ( ( 𝜑𝑘𝐴 ) → 𝐵 < 𝐶 )
6 difrp ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐶𝐵 ) ∈ ℝ+ ) )
7 3 4 6 syl2anc ( ( 𝜑𝑘𝐴 ) → ( 𝐵 < 𝐶 ↔ ( 𝐶𝐵 ) ∈ ℝ+ ) )
8 5 7 mpbid ( ( 𝜑𝑘𝐴 ) → ( 𝐶𝐵 ) ∈ ℝ+ )
9 1 2 8 fsumrpcl ( 𝜑 → Σ 𝑘𝐴 ( 𝐶𝐵 ) ∈ ℝ+ )
10 9 rpgt0d ( 𝜑 → 0 < Σ 𝑘𝐴 ( 𝐶𝐵 ) )
11 4 recnd ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℂ )
12 3 recnd ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
13 1 11 12 fsumsub ( 𝜑 → Σ 𝑘𝐴 ( 𝐶𝐵 ) = ( Σ 𝑘𝐴 𝐶 − Σ 𝑘𝐴 𝐵 ) )
14 10 13 breqtrd ( 𝜑 → 0 < ( Σ 𝑘𝐴 𝐶 − Σ 𝑘𝐴 𝐵 ) )
15 1 3 fsumrecl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ )
16 1 4 fsumrecl ( 𝜑 → Σ 𝑘𝐴 𝐶 ∈ ℝ )
17 15 16 posdifd ( 𝜑 → ( Σ 𝑘𝐴 𝐵 < Σ 𝑘𝐴 𝐶 ↔ 0 < ( Σ 𝑘𝐴 𝐶 − Σ 𝑘𝐴 𝐵 ) ) )
18 14 17 mpbird ( 𝜑 → Σ 𝑘𝐴 𝐵 < Σ 𝑘𝐴 𝐶 )