Metamath Proof Explorer


Theorem ftp

Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by Alexander van der Vekens, 23-Jan-2018)

Ref Expression
Hypotheses ftp.a 𝐴 ∈ V
ftp.b 𝐵 ∈ V
ftp.c 𝐶 ∈ V
ftp.d 𝑋 ∈ V
ftp.e 𝑌 ∈ V
ftp.f 𝑍 ∈ V
ftp.g 𝐴𝐵
ftp.h 𝐴𝐶
ftp.i 𝐵𝐶
Assertion ftp { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 }

Proof

Step Hyp Ref Expression
1 ftp.a 𝐴 ∈ V
2 ftp.b 𝐵 ∈ V
3 ftp.c 𝐶 ∈ V
4 ftp.d 𝑋 ∈ V
5 ftp.e 𝑌 ∈ V
6 ftp.f 𝑍 ∈ V
7 ftp.g 𝐴𝐵
8 ftp.h 𝐴𝐶
9 ftp.i 𝐵𝐶
10 1 2 3 3pm3.2i ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V )
11 4 5 6 3pm3.2i ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V )
12 7 8 9 3pm3.2i ( 𝐴𝐵𝐴𝐶𝐵𝐶 )
13 ftpg ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 } )
14 10 11 12 13 mp3an { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 }