Metamath Proof Explorer


Theorem funmo

Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998)

Ref Expression
Assertion funmo ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 )

Proof

Step Hyp Ref Expression
1 dffun6 ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) )
2 1 simplbi ( Fun 𝐹 → Rel 𝐹 )
3 brrelex1 ( ( Rel 𝐹𝐴 𝐹 𝑦 ) → 𝐴 ∈ V )
4 3 ex ( Rel 𝐹 → ( 𝐴 𝐹 𝑦𝐴 ∈ V ) )
5 2 4 syl ( Fun 𝐹 → ( 𝐴 𝐹 𝑦𝐴 ∈ V ) )
6 5 ancrd ( Fun 𝐹 → ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) )
7 6 alrimiv ( Fun 𝐹 → ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) )
8 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦𝐴 𝐹 𝑦 ) )
9 8 mobidv ( 𝑥 = 𝐴 → ( ∃* 𝑦 𝑥 𝐹 𝑦 ↔ ∃* 𝑦 𝐴 𝐹 𝑦 ) )
10 9 imbi2d ( 𝑥 = 𝐴 → ( ( Fun 𝐹 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ↔ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) )
11 1 simprbi ( Fun 𝐹 → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 )
12 11 19.21bi ( Fun 𝐹 → ∃* 𝑦 𝑥 𝐹 𝑦 )
13 10 12 vtoclg ( 𝐴 ∈ V → ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) )
14 13 com12 ( Fun 𝐹 → ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) )
15 moanimv ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ↔ ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) )
16 14 15 sylibr ( Fun 𝐹 → ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) )
17 moim ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) → ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) )
18 7 16 17 sylc ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 )