Metamath Proof Explorer


Theorem fununi

Description: The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion fununi ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 funrel ( Fun 𝑓 → Rel 𝑓 )
2 1 adantr ( ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → Rel 𝑓 )
3 2 ralimi ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑓𝐴 Rel 𝑓 )
4 reluni ( Rel 𝐴 ↔ ∀ 𝑓𝐴 Rel 𝑓 )
5 3 4 sylibr ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → Rel 𝐴 )
6 r19.28v ( ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) )
7 6 ralimi ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) )
8 ssel ( 𝑤𝑣 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ) )
9 8 anim1d ( 𝑤𝑣 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) )
10 dffun4 ( Fun 𝑣 ↔ ( Rel 𝑣 ∧ ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
11 10 simprbi ( Fun 𝑣 → ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
12 11 19.21bbi ( Fun 𝑣 → ∀ 𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
13 12 19.21bi ( Fun 𝑣 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑣 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
14 9 13 syl9r ( Fun 𝑣 → ( 𝑤𝑣 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
15 14 adantl ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑤𝑣 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
16 ssel ( 𝑣𝑤 → ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) )
17 16 anim2d ( 𝑣𝑤 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) ) )
18 dffun4 ( Fun 𝑤 ↔ ( Rel 𝑤 ∧ ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) )
19 18 simprbi ( Fun 𝑤 → ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) → 𝑦 = 𝑧 ) )
20 19 19.21bbi ( Fun 𝑤 → ∀ 𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) → 𝑦 = 𝑧 ) )
21 20 19.21bi ( Fun 𝑤 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑤 ) → 𝑦 = 𝑧 ) )
22 17 21 syl9r ( Fun 𝑤 → ( 𝑣𝑤 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
23 22 adantr ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑣𝑤 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
24 15 23 jaod ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( ( 𝑤𝑣𝑣𝑤 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
25 24 imp ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
26 25 2ralimi ( ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) → ∀ 𝑤𝐴𝑣𝐴 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
27 funeq ( 𝑓 = 𝑤 → ( Fun 𝑓 ↔ Fun 𝑤 ) )
28 sseq1 ( 𝑓 = 𝑤 → ( 𝑓𝑔𝑤𝑔 ) )
29 sseq2 ( 𝑓 = 𝑤 → ( 𝑔𝑓𝑔𝑤 ) )
30 28 29 orbi12d ( 𝑓 = 𝑤 → ( ( 𝑓𝑔𝑔𝑓 ) ↔ ( 𝑤𝑔𝑔𝑤 ) ) )
31 27 30 anbi12d ( 𝑓 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤𝑔𝑔𝑤 ) ) ) )
32 sseq2 ( 𝑔 = 𝑣 → ( 𝑤𝑔𝑤𝑣 ) )
33 sseq1 ( 𝑔 = 𝑣 → ( 𝑔𝑤𝑣𝑤 ) )
34 32 33 orbi12d ( 𝑔 = 𝑣 → ( ( 𝑤𝑔𝑔𝑤 ) ↔ ( 𝑤𝑣𝑣𝑤 ) ) )
35 34 anbi2d ( 𝑔 = 𝑣 → ( ( Fun 𝑤 ∧ ( 𝑤𝑔𝑔𝑤 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
36 31 35 cbvral2vw ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) )
37 ralcom ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ∀ 𝑔𝐴𝑓𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) )
38 orcom ( ( 𝑓𝑔𝑔𝑓 ) ↔ ( 𝑔𝑓𝑓𝑔 ) )
39 sseq1 ( 𝑔 = 𝑤 → ( 𝑔𝑓𝑤𝑓 ) )
40 sseq2 ( 𝑔 = 𝑤 → ( 𝑓𝑔𝑓𝑤 ) )
41 39 40 orbi12d ( 𝑔 = 𝑤 → ( ( 𝑔𝑓𝑓𝑔 ) ↔ ( 𝑤𝑓𝑓𝑤 ) ) )
42 38 41 syl5bb ( 𝑔 = 𝑤 → ( ( 𝑓𝑔𝑔𝑓 ) ↔ ( 𝑤𝑓𝑓𝑤 ) ) )
43 42 anbi2d ( 𝑔 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ( Fun 𝑓 ∧ ( 𝑤𝑓𝑓𝑤 ) ) ) )
44 funeq ( 𝑓 = 𝑣 → ( Fun 𝑓 ↔ Fun 𝑣 ) )
45 sseq2 ( 𝑓 = 𝑣 → ( 𝑤𝑓𝑤𝑣 ) )
46 sseq1 ( 𝑓 = 𝑣 → ( 𝑓𝑤𝑣𝑤 ) )
47 45 46 orbi12d ( 𝑓 = 𝑣 → ( ( 𝑤𝑓𝑓𝑤 ) ↔ ( 𝑤𝑣𝑣𝑤 ) ) )
48 44 47 anbi12d ( 𝑓 = 𝑣 → ( ( Fun 𝑓 ∧ ( 𝑤𝑓𝑓𝑤 ) ) ↔ ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
49 43 48 cbvral2vw ( ∀ 𝑔𝐴𝑓𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) )
50 37 49 bitri ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) )
51 36 50 anbi12i ( ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ∧ ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ) ↔ ( ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
52 anidm ( ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ∧ ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ) ↔ ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) )
53 anandir ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) ↔ ( ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
54 53 2ralbii ( ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
55 r19.26-2 ( ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) ↔ ( ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) )
56 54 55 bitr2i ( ( ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑤 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ∧ ∀ 𝑤𝐴𝑣𝐴 ( Fun 𝑣 ∧ ( 𝑤𝑣𝑣𝑤 ) ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) )
57 51 52 56 3bitr3i ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤𝑣𝑣𝑤 ) ) )
58 eluni ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ∃ 𝑤 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) )
59 eluni ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ↔ ∃ 𝑣 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) )
60 58 59 anbi12i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ↔ ( ∃ 𝑤 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ∃ 𝑣 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) )
61 exdistrv ( ∃ 𝑤𝑣 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) ↔ ( ∃ 𝑤 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ∃ 𝑣 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) )
62 an4 ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) ↔ ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ∧ ( 𝑤𝐴𝑣𝐴 ) ) )
63 62 biancomi ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) ↔ ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) )
64 63 2exbii ( ∃ 𝑤𝑣 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤𝑤𝐴 ) ∧ ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣𝑣𝐴 ) ) ↔ ∃ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) )
65 60 61 64 3bitr2i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) )
66 65 imbi1i ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) )
67 19.23v ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) )
68 r2al ( ∀ 𝑤𝐴𝑣𝐴 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
69 impexp ( ( ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑤𝐴𝑣𝐴 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
70 69 2albii ( ∀ 𝑤𝑣 ( ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤𝑣 ( ( 𝑤𝐴𝑣𝐴 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) )
71 19.23v ( ∀ 𝑣 ( ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) )
72 71 albii ( ∀ 𝑤𝑣 ( ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) )
73 68 70 72 3bitr2ri ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤𝐴𝑣𝐴 ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
74 66 67 73 3bitr2i ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤𝐴𝑣𝐴 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑤 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑣 ) → 𝑦 = 𝑧 ) )
75 26 57 74 3imtr4i ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) )
76 75 alrimiv ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) )
77 76 alrimivv ( ∀ 𝑓𝐴𝑔𝐴 ( Fun 𝑓 ∧ ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) )
78 7 77 syl ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) )
79 dffun4 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) → 𝑦 = 𝑧 ) ) )
80 5 78 79 sylanbrc ( ∀ 𝑓𝐴 ( Fun 𝑓 ∧ ∀ 𝑔𝐴 ( 𝑓𝑔𝑔𝑓 ) ) → Fun 𝐴 )