Metamath Proof Explorer


Theorem fvelimab

Description: Function value in an image. (Contributed by NM, 20-Jan-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by David Abernethy, 17-Dec-2011)

Ref Expression
Assertion fvelimab ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐶 ∈ ( 𝐹𝐵 ) → 𝐶 ∈ V )
2 1 anim2i ( ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ 𝐶 ∈ ( 𝐹𝐵 ) ) → ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ 𝐶 ∈ V ) )
3 fvex ( 𝐹𝑥 ) ∈ V
4 eleq1 ( ( 𝐹𝑥 ) = 𝐶 → ( ( 𝐹𝑥 ) ∈ V ↔ 𝐶 ∈ V ) )
5 3 4 mpbii ( ( 𝐹𝑥 ) = 𝐶𝐶 ∈ V )
6 5 rexlimivw ( ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶𝐶 ∈ V )
7 6 anim2i ( ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) → ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ 𝐶 ∈ V ) )
8 eleq1 ( 𝑦 = 𝐶 → ( 𝑦 ∈ ( 𝐹𝐵 ) ↔ 𝐶 ∈ ( 𝐹𝐵 ) ) )
9 eqeq2 ( 𝑦 = 𝐶 → ( ( 𝐹𝑥 ) = 𝑦 ↔ ( 𝐹𝑥 ) = 𝐶 ) )
10 9 rexbidv ( 𝑦 = 𝐶 → ( ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )
11 8 10 bibi12d ( 𝑦 = 𝐶 → ( ( 𝑦 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 ) ↔ ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) ) )
12 11 imbi2d ( 𝑦 = 𝐶 → ( ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝑦 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 ) ) ↔ ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) ) ) )
13 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
14 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
15 14 sseq2d ( 𝐹 Fn 𝐴 → ( 𝐵 ⊆ dom 𝐹𝐵𝐴 ) )
16 15 biimpar ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → 𝐵 ⊆ dom 𝐹 )
17 dfimafn ( ( Fun 𝐹𝐵 ⊆ dom 𝐹 ) → ( 𝐹𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 } )
18 13 16 17 syl2an2r ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐹𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 } )
19 18 abeq2d ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝑦 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝑦 ) )
20 12 19 vtoclg ( 𝐶 ∈ V → ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) ) )
21 20 impcom ( ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )
22 2 7 21 pm5.21nd ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )