Metamath Proof Explorer


Theorem fvresex

Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis fvresex.1 𝐴 ∈ V
Assertion fvresex { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹𝐴 ) ‘ 𝑥 ) } ∈ V

Proof

Step Hyp Ref Expression
1 fvresex.1 𝐴 ∈ V
2 ssv 𝐴 ⊆ V
3 resmpt ( 𝐴 ⊆ V → ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ↾ 𝐴 ) = ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) )
4 2 3 ax-mp ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ↾ 𝐴 ) = ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) )
5 4 fveq1i ( ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 )
6 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
7 eqid ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) = ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) )
8 fvex ( 𝐹𝑥 ) ∈ V
9 6 7 8 fvmpt ( 𝑥 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
10 9 elv ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 )
11 fveqres ( ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) → ( ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹𝐴 ) ‘ 𝑥 ) )
12 10 11 ax-mp ( ( ( 𝑧 ∈ V ↦ ( 𝐹𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹𝐴 ) ‘ 𝑥 )
13 5 12 eqtr3i ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) = ( ( 𝐹𝐴 ) ‘ 𝑥 )
14 13 eqeq2i ( 𝑦 = ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) ↔ 𝑦 = ( ( 𝐹𝐴 ) ‘ 𝑥 ) )
15 14 exbii ( ∃ 𝑥 𝑦 = ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) ↔ ∃ 𝑥 𝑦 = ( ( 𝐹𝐴 ) ‘ 𝑥 ) )
16 15 abbii { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹𝐴 ) ‘ 𝑥 ) }
17 1 mptex ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ∈ V
18 17 fvclex { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) ‘ 𝑥 ) } ∈ V
19 16 18 eqeltrri { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹𝐴 ) ‘ 𝑥 ) } ∈ V