Metamath Proof Explorer


Theorem ghminv

Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghminv.b 𝐵 = ( Base ‘ 𝑆 )
ghminv.y 𝑀 = ( invg𝑆 )
ghminv.z 𝑁 = ( invg𝑇 )
Assertion ghminv ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝑀𝑋 ) ) = ( 𝑁 ‘ ( 𝐹𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 ghminv.b 𝐵 = ( Base ‘ 𝑆 )
2 ghminv.y 𝑀 = ( invg𝑆 )
3 ghminv.z 𝑁 = ( invg𝑇 )
4 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
5 eqid ( +g𝑆 ) = ( +g𝑆 )
6 eqid ( 0g𝑆 ) = ( 0g𝑆 )
7 1 5 6 2 grprinv ( ( 𝑆 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 ( +g𝑆 ) ( 𝑀𝑋 ) ) = ( 0g𝑆 ) )
8 4 7 sylan ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝑋 ( +g𝑆 ) ( 𝑀𝑋 ) ) = ( 0g𝑆 ) )
9 8 fveq2d ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g𝑆 ) ( 𝑀𝑋 ) ) ) = ( 𝐹 ‘ ( 0g𝑆 ) ) )
10 1 2 grpinvcl ( ( 𝑆 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑀𝑋 ) ∈ 𝐵 )
11 4 10 sylan ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝑀𝑋 ) ∈ 𝐵 )
12 eqid ( +g𝑇 ) = ( +g𝑇 )
13 1 5 12 ghmlin ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g𝑆 ) ( 𝑀𝑋 ) ) ) = ( ( 𝐹𝑋 ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝑀𝑋 ) ) ) )
14 11 13 mpd3an3 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g𝑆 ) ( 𝑀𝑋 ) ) ) = ( ( 𝐹𝑋 ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝑀𝑋 ) ) ) )
15 eqid ( 0g𝑇 ) = ( 0g𝑇 )
16 6 15 ghmid ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) )
17 16 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) )
18 9 14 17 3eqtr3d ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( ( 𝐹𝑋 ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝑀𝑋 ) ) ) = ( 0g𝑇 ) )
19 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
20 19 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → 𝑇 ∈ Grp )
21 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
22 1 21 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
23 22 ffvelrnda ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝑇 ) )
24 22 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
25 24 11 ffvelrnd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝑀𝑋 ) ) ∈ ( Base ‘ 𝑇 ) )
26 21 12 15 3 grpinvid1 ( ( 𝑇 ∈ Grp ∧ ( 𝐹𝑋 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ ( 𝑀𝑋 ) ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝐹𝑋 ) ) = ( 𝐹 ‘ ( 𝑀𝑋 ) ) ↔ ( ( 𝐹𝑋 ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝑀𝑋 ) ) ) = ( 0g𝑇 ) ) )
27 20 23 25 26 syl3anc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( ( 𝑁 ‘ ( 𝐹𝑋 ) ) = ( 𝐹 ‘ ( 𝑀𝑋 ) ) ↔ ( ( 𝐹𝑋 ) ( +g𝑇 ) ( 𝐹 ‘ ( 𝑀𝑋 ) ) ) = ( 0g𝑇 ) ) )
28 18 27 mpbird ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝐹𝑋 ) ) = ( 𝐹 ‘ ( 𝑀𝑋 ) ) )
29 28 eqcomd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝑀𝑋 ) ) = ( 𝑁 ‘ ( 𝐹𝑋 ) ) )