Metamath Proof Explorer


Theorem grutsk

Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion grutsk Univ = { 𝑥 ∈ Tarski ∣ Tr 𝑥 }

Proof

Step Hyp Ref Expression
1 0tsk ∅ ∈ Tarski
2 eleq1 ( 𝑦 = ∅ → ( 𝑦 ∈ Tarski ↔ ∅ ∈ Tarski ) )
3 1 2 mpbiri ( 𝑦 = ∅ → 𝑦 ∈ Tarski )
4 3 a1i ( 𝑦 ∈ Univ → ( 𝑦 = ∅ → 𝑦 ∈ Tarski ) )
5 vex 𝑦 ∈ V
6 unir1 ( 𝑅1 “ On ) = V
7 5 6 eleqtrri 𝑦 ( 𝑅1 “ On )
8 eqid ( 𝑦 ∩ On ) = ( 𝑦 ∩ On )
9 8 grur1 ( ( 𝑦 ∈ Univ ∧ 𝑦 ( 𝑅1 “ On ) ) → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) )
10 7 9 mpan2 ( 𝑦 ∈ Univ → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) )
11 10 adantr ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) )
12 8 gruina ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → ( 𝑦 ∩ On ) ∈ Inacc )
13 inatsk ( ( 𝑦 ∩ On ) ∈ Inacc → ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ∈ Tarski )
14 12 13 syl ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ∈ Tarski )
15 11 14 eqeltrd ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → 𝑦 ∈ Tarski )
16 15 ex ( 𝑦 ∈ Univ → ( 𝑦 ≠ ∅ → 𝑦 ∈ Tarski ) )
17 4 16 pm2.61dne ( 𝑦 ∈ Univ → 𝑦 ∈ Tarski )
18 grutr ( 𝑦 ∈ Univ → Tr 𝑦 )
19 17 18 jca ( 𝑦 ∈ Univ → ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) )
20 grutsk1 ( ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) → 𝑦 ∈ Univ )
21 19 20 impbii ( 𝑦 ∈ Univ ↔ ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) )
22 treq ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) )
23 22 elrab ( 𝑦 ∈ { 𝑥 ∈ Tarski ∣ Tr 𝑥 } ↔ ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) )
24 21 23 bitr4i ( 𝑦 ∈ Univ ↔ 𝑦 ∈ { 𝑥 ∈ Tarski ∣ Tr 𝑥 } )
25 24 eqriv Univ = { 𝑥 ∈ Tarski ∣ Tr 𝑥 }