Metamath Proof Explorer


Theorem gsum2d

Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
gsum2d.z 0 = ( 0g𝐺 )
gsum2d.g ( 𝜑𝐺 ∈ CMnd )
gsum2d.a ( 𝜑𝐴𝑉 )
gsum2d.r ( 𝜑 → Rel 𝐴 )
gsum2d.d ( 𝜑𝐷𝑊 )
gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
gsum2d.w ( 𝜑𝐹 finSupp 0 )
Assertion gsum2d ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
2 gsum2d.z 0 = ( 0g𝐺 )
3 gsum2d.g ( 𝜑𝐺 ∈ CMnd )
4 gsum2d.a ( 𝜑𝐴𝑉 )
5 gsum2d.r ( 𝜑 → Rel 𝐴 )
6 gsum2d.d ( 𝜑𝐷𝑊 )
7 gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
8 gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
9 gsum2d.w ( 𝜑𝐹 finSupp 0 )
10 1 2 3 4 5 6 7 8 9 gsum2dlem2 ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
11 suppssdm ( 𝐹 supp 0 ) ⊆ dom 𝐹
12 11 8 fssdm ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 )
13 relss ( ( 𝐹 supp 0 ) ⊆ 𝐴 → ( Rel 𝐴 → Rel ( 𝐹 supp 0 ) ) )
14 12 5 13 sylc ( 𝜑 → Rel ( 𝐹 supp 0 ) )
15 relssdmrn ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) )
16 ssv ran ( 𝐹 supp 0 ) ⊆ V
17 xpss2 ( ran ( 𝐹 supp 0 ) ⊆ V → ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) )
18 16 17 ax-mp ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V )
19 15 18 sstrdi ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) )
20 14 19 syl ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) )
21 12 20 ssind ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) ) )
22 df-res ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) = ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) )
23 21 22 sseqtrrdi ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) )
24 1 2 3 4 8 23 9 gsumres ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg 𝐹 ) )
25 dmss ( ( 𝐹 supp 0 ) ⊆ 𝐴 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 )
26 12 25 syl ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 )
27 26 7 sstrd ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ 𝐷 )
28 27 resmptd ( 𝜑 → ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
29 28 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
30 1 2 3 4 5 6 7 8 9 gsum2dlem1 ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )
31 30 adantr ( ( 𝜑𝑗𝐷 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )
32 31 fmpttd ( 𝜑 → ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) : 𝐷𝐵 )
33 vex 𝑗 ∈ V
34 vex 𝑘 ∈ V
35 33 34 elimasn ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
36 35 biimpi ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
37 36 ad2antll ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
38 eldifn ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) )
39 38 ad2antrl ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) )
40 33 34 opeldm ( ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) → 𝑗 ∈ dom ( 𝐹 supp 0 ) )
41 39 40 nsyl ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) )
42 37 41 eldifd ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) )
43 df-ov ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ )
44 ssidd ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
45 2 fvexi 0 ∈ V
46 45 a1i ( 𝜑0 ∈ V )
47 8 44 4 46 suppssr ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ ) = 0 )
48 43 47 syl5eq ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
49 42 48 syldan ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
50 49 anassrs ( ( ( 𝜑𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
51 50 mpteq2dva ( ( 𝜑𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) )
52 51 oveq2d ( ( 𝜑𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) )
53 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
54 3 53 syl ( 𝜑𝐺 ∈ Mnd )
55 imaexg ( 𝐴𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V )
56 4 55 syl ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V )
57 2 gsumz ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 “ { 𝑗 } ) ∈ V ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 )
58 54 56 57 syl2anc ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 )
59 58 adantr ( ( 𝜑𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 )
60 52 59 eqtrd ( ( 𝜑𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = 0 )
61 60 6 suppss2 ( 𝜑 → ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ⊆ dom ( 𝐹 supp 0 ) )
62 funmpt Fun ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
63 62 a1i ( 𝜑 → Fun ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
64 9 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
65 dmfi ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin )
66 64 65 syl ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin )
67 66 61 ssfid ( 𝜑 → ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin )
68 6 mptexd ( 𝜑 → ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V )
69 isfsupp ( ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) )
70 68 46 69 syl2anc ( 𝜑 → ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) )
71 63 67 70 mpbir2and ( 𝜑 → ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 )
72 1 2 3 6 32 61 71 gsumres ( 𝜑 → ( 𝐺 Σg ( ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
73 29 72 eqtr3d ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
74 10 24 73 3eqtr3d ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )