Metamath Proof Explorer


Theorem harval2

Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harval2 ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 harval ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦𝐴 } )
2 1 adantr ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ) → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦𝐴 } )
3 sdomel ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦𝑥𝑦𝑥 ) )
4 domsdomtr ( ( 𝑦𝐴𝐴𝑥 ) → 𝑦𝑥 )
5 3 4 impel ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝑦𝐴𝐴𝑥 ) ) → 𝑦𝑥 )
6 5 an4s ( ( ( 𝑦 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ) → 𝑦𝑥 )
7 6 ancoms ( ( ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ∧ ( 𝑦 ∈ On ∧ 𝑦𝐴 ) ) → 𝑦𝑥 )
8 7 3impb ( ( ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ∧ 𝑦 ∈ On ∧ 𝑦𝐴 ) → 𝑦𝑥 )
9 8 rabssdv ( ( 𝑥 ∈ On ∧ 𝐴𝑥 ) → { 𝑦 ∈ On ∣ 𝑦𝐴 } ⊆ 𝑥 )
10 9 adantl ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ) → { 𝑦 ∈ On ∣ 𝑦𝐴 } ⊆ 𝑥 )
11 2 10 eqsstrd ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴𝑥 ) ) → ( har ‘ 𝐴 ) ⊆ 𝑥 )
12 11 expr ( ( 𝐴 ∈ dom card ∧ 𝑥 ∈ On ) → ( 𝐴𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) )
13 12 ralrimiva ( 𝐴 ∈ dom card → ∀ 𝑥 ∈ On ( 𝐴𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) )
14 ssintrab ( ( har ‘ 𝐴 ) ⊆ { 𝑥 ∈ On ∣ 𝐴𝑥 } ↔ ∀ 𝑥 ∈ On ( 𝐴𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) )
15 13 14 sylibr ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ⊆ { 𝑥 ∈ On ∣ 𝐴𝑥 } )
16 breq2 ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴𝑥𝐴 ≺ ( har ‘ 𝐴 ) ) )
17 harcl ( har ‘ 𝐴 ) ∈ On
18 17 a1i ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ On )
19 harsdom ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) )
20 16 18 19 elrabd ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴𝑥 } )
21 intss1 ( ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴𝑥 } → { 𝑥 ∈ On ∣ 𝐴𝑥 } ⊆ ( har ‘ 𝐴 ) )
22 20 21 syl ( 𝐴 ∈ dom card → { 𝑥 ∈ On ∣ 𝐴𝑥 } ⊆ ( har ‘ 𝐴 ) )
23 15 22 eqssd ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴𝑥 } )