Metamath Proof Explorer


Theorem iccssioo2

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo2 ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ )
2 1 adantr ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ )
3 ndmioo ( ¬ ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ )
4 3 necon1ai ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) )
5 2 4 syl ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) )
6 eliooord ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐶𝐶 < 𝐵 ) )
7 6 adantr ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐶𝐶 < 𝐵 ) )
8 7 simpld ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 )
9 eliooord ( 𝐷 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐷𝐷 < 𝐵 ) )
10 9 adantl ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐷𝐷 < 𝐵 ) )
11 10 simprd ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 < 𝐵 )
12 iccssioo ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )
13 5 8 11 12 syl12anc ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )