Metamath Proof Explorer


Theorem iddvdsexp

Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion iddvdsexp ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
2 zexpcl ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ )
3 1 2 sylan2 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ )
4 simpl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ )
5 dvdsmul2 ( ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) )
6 3 4 5 syl2anc ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) )
7 zcn ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ )
8 expm1t ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑀𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) )
9 7 8 sylan ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) )
10 6 9 breqtrrd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀𝑁 ) )