Metamath Proof Explorer


Theorem imaeq1d

Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006)

Ref Expression
Hypothesis imaeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion imaeq1d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 imaeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 imaeq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )