Metamath Proof Explorer


Theorem infcvgaux1i

Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)

Ref Expression
Hypotheses infcvg.1 𝑅 = { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 }
infcvg.2 ( 𝑦𝑋𝐴 ∈ ℝ )
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧
Assertion infcvgaux1i ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧 )

Proof

Step Hyp Ref Expression
1 infcvg.1 𝑅 = { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 }
2 infcvg.2 ( 𝑦𝑋𝐴 ∈ ℝ )
3 infcvg.3 𝑍𝑋
4 infcvg.4 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧
5 2 renegcld ( 𝑦𝑋 → - 𝐴 ∈ ℝ )
6 eleq1 ( 𝑥 = - 𝐴 → ( 𝑥 ∈ ℝ ↔ - 𝐴 ∈ ℝ ) )
7 5 6 syl5ibrcom ( 𝑦𝑋 → ( 𝑥 = - 𝐴𝑥 ∈ ℝ ) )
8 7 rexlimiv ( ∃ 𝑦𝑋 𝑥 = - 𝐴𝑥 ∈ ℝ )
9 8 abssi { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 } ⊆ ℝ
10 1 9 eqsstri 𝑅 ⊆ ℝ
11 eqid - 𝑍 / 𝑦 𝐴 = - 𝑍 / 𝑦 𝐴
12 11 nfth 𝑦 - 𝑍 / 𝑦 𝐴 = - 𝑍 / 𝑦 𝐴
13 csbeq1a ( 𝑦 = 𝑍𝐴 = 𝑍 / 𝑦 𝐴 )
14 13 negeqd ( 𝑦 = 𝑍 → - 𝐴 = - 𝑍 / 𝑦 𝐴 )
15 14 eqeq2d ( 𝑦 = 𝑍 → ( - 𝑍 / 𝑦 𝐴 = - 𝐴 ↔ - 𝑍 / 𝑦 𝐴 = - 𝑍 / 𝑦 𝐴 ) )
16 12 15 rspce ( ( 𝑍𝑋 ∧ - 𝑍 / 𝑦 𝐴 = - 𝑍 / 𝑦 𝐴 ) → ∃ 𝑦𝑋 - 𝑍 / 𝑦 𝐴 = - 𝐴 )
17 3 11 16 mp2an 𝑦𝑋 - 𝑍 / 𝑦 𝐴 = - 𝐴
18 negex - 𝑍 / 𝑦 𝐴 ∈ V
19 nfcsb1v 𝑦 𝑍 / 𝑦 𝐴
20 19 nfneg 𝑦 - 𝑍 / 𝑦 𝐴
21 20 nfeq2 𝑦 𝑥 = - 𝑍 / 𝑦 𝐴
22 eqeq1 ( 𝑥 = - 𝑍 / 𝑦 𝐴 → ( 𝑥 = - 𝐴 ↔ - 𝑍 / 𝑦 𝐴 = - 𝐴 ) )
23 21 22 rexbid ( 𝑥 = - 𝑍 / 𝑦 𝐴 → ( ∃ 𝑦𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦𝑋 - 𝑍 / 𝑦 𝐴 = - 𝐴 ) )
24 18 23 elab ( - 𝑍 / 𝑦 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 } ↔ ∃ 𝑦𝑋 - 𝑍 / 𝑦 𝐴 = - 𝐴 )
25 17 24 mpbir - 𝑍 / 𝑦 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 }
26 25 1 eleqtrri - 𝑍 / 𝑦 𝐴𝑅
27 26 ne0ii 𝑅 ≠ ∅
28 10 27 4 3pm3.2i ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧 )