Metamath Proof Explorer


Theorem infxpenc2lem3

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc2.1 ( 𝜑𝐴 ∈ On )
infxpenc2.2 ( 𝜑 → ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
infxpenc2.3 𝑊 = ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛𝑏 ) )
infxpenc2.4 ( 𝜑𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω )
infxpenc2.5 ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ )
Assertion infxpenc2lem3 ( 𝜑 → ∃ 𝑔𝑏𝐴 ( ω ⊆ 𝑏 → ( 𝑔𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )

Proof

Step Hyp Ref Expression
1 infxpenc2.1 ( 𝜑𝐴 ∈ On )
2 infxpenc2.2 ( 𝜑 → ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
3 infxpenc2.3 𝑊 = ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛𝑏 ) )
4 infxpenc2.4 ( 𝜑𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω )
5 infxpenc2.5 ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ )
6 eqid ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) )
7 eqid ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) ) ) ∘ ( ( ω ↑o 2o ) CNF 𝑊 ) ) = ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) ) ) ∘ ( ( ω ↑o 2o ) CNF 𝑊 ) )
8 eqid ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) )
9 eqid ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) = ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) )
10 eqid ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) = ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) )
11 eqid ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ( ω CNF ( 𝑊 ·o 2o ) ) ) = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ( ω CNF ( 𝑊 ·o 2o ) ) )
12 eqid ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) )
13 eqid ( 𝑥𝑏 , 𝑦𝑏 ↦ ⟨ ( ( 𝑛𝑏 ) ‘ 𝑥 ) , ( ( 𝑛𝑏 ) ‘ 𝑦 ) ⟩ ) = ( 𝑥𝑏 , 𝑦𝑏 ↦ ⟨ ( ( 𝑛𝑏 ) ‘ 𝑥 ) , ( ( 𝑛𝑏 ) ‘ 𝑦 ) ⟩ )
14 eqid ( ( 𝑛𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) ) ) ∘ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥𝑏 , 𝑦𝑏 ↦ ⟨ ( ( 𝑛𝑏 ) ‘ 𝑥 ) , ( ( 𝑛𝑏 ) ‘ 𝑦 ) ⟩ ) ) ) = ( ( 𝑛𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ( I ↾ 𝑊 ) ) ) ) ) ∘ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ( ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ( 𝑧 ∈ 2o , 𝑤𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥𝑏 , 𝑦𝑏 ↦ ⟨ ( ( 𝑛𝑏 ) ‘ 𝑥 ) , ( ( 𝑛𝑏 ) ‘ 𝑦 ) ⟩ ) ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 infxpenc2lem2 ( 𝜑 → ∃ 𝑔𝑏𝐴 ( ω ⊆ 𝑏 → ( 𝑔𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto𝑏 ) )