Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ixp0x | ⊢ X 𝑥 ∈ ∅ 𝐴 = { ∅ } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp | ⊢ X 𝑥 ∈ ∅ 𝐴 = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) } | |
2 | velsn | ⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) | |
3 | fn0 | ⊢ ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ ) | |
4 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 | |
5 | 4 | biantru | ⊢ ( 𝑓 Fn ∅ ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) ) |
6 | 2 3 5 | 3bitr2i | ⊢ ( 𝑓 ∈ { ∅ } ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) ) |
7 | 6 | abbi2i | ⊢ { ∅ } = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) } |
8 | 1 7 | eqtr4i | ⊢ X 𝑥 ∈ ∅ 𝐴 = { ∅ } |