Metamath Proof Explorer


Theorem kmlem4

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion kmlem4 ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ )

Proof

Step Hyp Ref Expression
1 elequ1 ( 𝑣 = 𝑤 → ( 𝑣𝑥𝑤𝑥 ) )
2 neeq2 ( 𝑣 = 𝑤 → ( 𝑧𝑣𝑧𝑤 ) )
3 1 2 anbi12d ( 𝑣 = 𝑤 → ( ( 𝑣𝑥𝑧𝑣 ) ↔ ( 𝑤𝑥𝑧𝑤 ) ) )
4 elequ2 ( 𝑣 = 𝑤 → ( 𝑦𝑣𝑦𝑤 ) )
5 4 notbid ( 𝑣 = 𝑤 → ( ¬ 𝑦𝑣 ↔ ¬ 𝑦𝑤 ) )
6 3 5 imbi12d ( 𝑣 = 𝑤 → ( ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) ↔ ( ( 𝑤𝑥𝑧𝑤 ) → ¬ 𝑦𝑤 ) ) )
7 6 spvv ( ∀ 𝑣 ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) → ( ( 𝑤𝑥𝑧𝑤 ) → ¬ 𝑦𝑤 ) )
8 eldif ( 𝑦 ∈ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑦𝑧 ∧ ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) ) )
9 simpr ( ( 𝑦𝑧 ∧ ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) )
10 eluni ( 𝑦 ( 𝑥 ∖ { 𝑧 } ) ↔ ∃ 𝑣 ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) )
11 10 notbii ( ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) ↔ ¬ ∃ 𝑣 ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) )
12 alnex ( ∀ 𝑣 ¬ ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ∃ 𝑣 ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) )
13 con2b ( ( 𝑦𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦𝑣 ) )
14 imnan ( ( 𝑦𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) )
15 eldifsn ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣𝑥𝑣𝑧 ) )
16 necom ( 𝑣𝑧𝑧𝑣 )
17 16 anbi2i ( ( 𝑣𝑥𝑣𝑧 ) ↔ ( 𝑣𝑥𝑧𝑣 ) )
18 15 17 bitri ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣𝑥𝑧𝑣 ) )
19 18 imbi1i ( ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦𝑣 ) ↔ ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
20 13 14 19 3bitr3i ( ¬ ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
21 20 albii ( ∀ 𝑣 ¬ ( 𝑦𝑣𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ∀ 𝑣 ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
22 11 12 21 3bitr2i ( ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) ↔ ∀ 𝑣 ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
23 9 22 sylib ( ( 𝑦𝑧 ∧ ¬ 𝑦 ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
24 8 23 sylbi ( 𝑦 ∈ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣𝑥𝑧𝑣 ) → ¬ 𝑦𝑣 ) )
25 7 24 syl11 ( ( 𝑤𝑥𝑧𝑤 ) → ( 𝑦 ∈ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦𝑤 ) )
26 25 ralrimiv ( ( 𝑤𝑥𝑧𝑤 ) → ∀ 𝑦 ∈ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦𝑤 )
27 disj ( ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ↔ ∀ 𝑦 ∈ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦𝑤 )
28 26 27 sylibr ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ )