Metamath Proof Explorer


Theorem lhpmcvr

Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpmcvr.b 𝐵 = ( Base ‘ 𝐾 )
lhpmcvr.l = ( le ‘ 𝐾 )
lhpmcvr.m = ( meet ‘ 𝐾 )
lhpmcvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
lhpmcvr.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpmcvr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) 𝐶 𝑋 )

Proof

Step Hyp Ref Expression
1 lhpmcvr.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpmcvr.l = ( le ‘ 𝐾 )
3 lhpmcvr.m = ( meet ‘ 𝐾 )
4 lhpmcvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 lhpmcvr.h 𝐻 = ( LHyp ‘ 𝐾 )
6 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
7 6 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝐾 ∈ Lat )
8 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
9 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
10 9 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑊𝐵 )
11 1 3 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) = ( 𝑊 𝑋 ) )
12 7 8 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) = ( 𝑊 𝑋 ) )
13 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
14 13 4 5 lhp1cvr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊 𝐶 ( 1. ‘ 𝐾 ) )
15 14 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑊 𝐶 ( 1. ‘ 𝐾 ) )
16 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
17 1 2 16 13 5 lhpj1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) = ( 1. ‘ 𝐾 ) )
18 15 17 breqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) )
19 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝐾 ∈ HL )
20 1 16 3 4 cvrexch ( ( 𝐾 ∈ HL ∧ 𝑊𝐵𝑋𝐵 ) → ( ( 𝑊 𝑋 ) 𝐶 𝑋𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) )
21 19 10 8 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝑊 𝑋 ) 𝐶 𝑋𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) )
22 18 21 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑊 𝑋 ) 𝐶 𝑋 )
23 12 22 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) 𝐶 𝑋 )