Metamath Proof Explorer


Theorem limsupcl

Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2020)

Ref Expression
Assertion limsupcl ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 elex ( 𝐹𝑉𝐹 ∈ V )
2 df-limsup lim sup = ( 𝑓 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
3 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
4 inss2 ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
5 supxrcl ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
6 4 5 mp1i ( 𝑘 ∈ ℝ → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
7 3 6 fmpti ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ*
8 frn ( ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* )
9 7 8 ax-mp ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ*
10 infxrcl ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* )
11 9 10 mp1i ( 𝑓 ∈ V → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* )
12 2 11 fmpti lim sup : V ⟶ ℝ*
13 12 ffvelrni ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
14 1 13 syl ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )