Metamath Proof Explorer


Theorem ltexpri

Description: Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 13-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion ltexpri ( 𝐴 <P 𝐵 → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ltrelpr <P ⊆ ( P × P )
2 1 brel ( 𝐴 <P 𝐵 → ( 𝐴P𝐵P ) )
3 ltprord ( ( 𝐴P𝐵P ) → ( 𝐴 <P 𝐵𝐴𝐵 ) )
4 oveq2 ( 𝑦 = 𝑧 → ( 𝑤 +Q 𝑦 ) = ( 𝑤 +Q 𝑧 ) )
5 4 eleq1d ( 𝑦 = 𝑧 → ( ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ↔ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) )
6 5 anbi2d ( 𝑦 = 𝑧 → ( ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) )
7 6 exbidv ( 𝑦 = 𝑧 → ( ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) )
8 7 cbvabv { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) }
9 8 ltexprlem5 ( ( 𝐵P𝐴𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P )
10 9 adantll ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P )
11 8 ltexprlem6 ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ⊆ 𝐵 )
12 8 ltexprlem7 ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → 𝐵 ⊆ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) )
13 11 12 eqssd ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 )
14 oveq2 ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( 𝐴 +P 𝑥 ) = ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) )
15 14 eqeq1d ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( ( 𝐴 +P 𝑥 ) = 𝐵 ↔ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) )
16 15 rspcev ( ( { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ∧ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 )
17 10 13 16 syl2anc ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 )
18 17 ex ( ( 𝐴P𝐵P ) → ( 𝐴𝐵 → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 ) )
19 3 18 sylbid ( ( 𝐴P𝐵P ) → ( 𝐴 <P 𝐵 → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 ) )
20 2 19 mpcom ( 𝐴 <P 𝐵 → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 )