Metamath Proof Explorer


Theorem ltexprlem2

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
Assertion ltexprlem2 ( 𝐵P𝐶Q )

Proof

Step Hyp Ref Expression
1 ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
2 1 abeq2i ( 𝑥𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
3 elprnq ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q )
4 addnqf +Q : ( Q × Q ) ⟶ Q
5 4 fdmi dom +Q = ( Q × Q )
6 0nnq ¬ ∅ ∈ Q
7 5 6 ndmovrcl ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦Q𝑥Q ) )
8 3 7 syl ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦Q𝑥Q ) )
9 ltaddnq ( ( 𝑥Q𝑦Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) )
10 9 ancoms ( ( 𝑦Q𝑥Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) )
11 addcomnq ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 )
12 10 11 breqtrdi ( ( 𝑦Q𝑥Q ) → 𝑥 <Q ( 𝑦 +Q 𝑥 ) )
13 prcdnq ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑥 <Q ( 𝑦 +Q 𝑥 ) → 𝑥𝐵 ) )
14 12 13 syl5 ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑦Q𝑥Q ) → 𝑥𝐵 ) )
15 8 14 mpd ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥𝐵 )
16 15 ex ( 𝐵P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵𝑥𝐵 ) )
17 16 adantld ( 𝐵P → ( ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥𝐵 ) )
18 17 exlimdv ( 𝐵P → ( ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥𝐵 ) )
19 2 18 syl5bi ( 𝐵P → ( 𝑥𝐶𝑥𝐵 ) )
20 19 ssrdv ( 𝐵P𝐶𝐵 )
21 prpssnq ( 𝐵P𝐵Q )
22 20 21 sspsstrd ( 𝐵P𝐶Q )