Metamath Proof Explorer


Theorem marypha2lem2

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t 𝑇 = 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) )
Assertion marypha2lem2 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) }

Proof

Step Hyp Ref Expression
1 marypha2lem.t 𝑇 = 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) )
2 sneq ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } )
3 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
4 2 3 xpeq12d ( 𝑥 = 𝑧 → ( { 𝑥 } × ( 𝐹𝑥 ) ) = ( { 𝑧 } × ( 𝐹𝑧 ) ) )
5 4 cbviunv 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) ) = 𝑧𝐴 ( { 𝑧 } × ( 𝐹𝑧 ) )
6 df-xp ( { 𝑧 } × ( 𝐹𝑧 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) }
7 6 a1i ( 𝑧𝐴 → ( { 𝑧 } × ( 𝐹𝑧 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) } )
8 7 iuneq2i 𝑧𝐴 ( { 𝑧 } × ( 𝐹𝑧 ) ) = 𝑧𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) }
9 iunopab 𝑧𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) }
10 velsn ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 )
11 equcom ( 𝑥 = 𝑧𝑧 = 𝑥 )
12 10 11 bitri ( 𝑥 ∈ { 𝑧 } ↔ 𝑧 = 𝑥 )
13 12 anbi1i ( ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) ↔ ( 𝑧 = 𝑥𝑦 ∈ ( 𝐹𝑧 ) ) )
14 13 rexbii ( ∃ 𝑧𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) ↔ ∃ 𝑧𝐴 ( 𝑧 = 𝑥𝑦 ∈ ( 𝐹𝑧 ) ) )
15 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
16 15 eleq2d ( 𝑧 = 𝑥 → ( 𝑦 ∈ ( 𝐹𝑧 ) ↔ 𝑦 ∈ ( 𝐹𝑥 ) ) )
17 16 ceqsrexbv ( ∃ 𝑧𝐴 ( 𝑧 = 𝑥𝑦 ∈ ( 𝐹𝑧 ) ) ↔ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) )
18 14 17 bitri ( ∃ 𝑧𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) ↔ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) )
19 18 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹𝑧 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) }
20 8 9 19 3eqtri 𝑧𝐴 ( { 𝑧 } × ( 𝐹𝑧 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) }
21 1 5 20 3eqtri 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐹𝑥 ) ) }