Metamath Proof Explorer


Theorem mendbas

Description: Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypothesis mendbas.a 𝐴 = ( MEndo ‘ 𝑀 )
Assertion mendbas ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 mendbas.a 𝐴 = ( MEndo ‘ 𝑀 )
2 ovex ( 𝑀 LMHom 𝑀 ) ∈ V
3 eqid ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } )
4 3 algbase ( ( 𝑀 LMHom 𝑀 ) ∈ V → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) ) )
5 2 4 mp1i ( 𝑀 ∈ V → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) ) )
6 eqid ( 𝑀 LMHom 𝑀 ) = ( 𝑀 LMHom 𝑀 )
7 eqid ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) )
8 eqid ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) = ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) )
9 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
10 eqid ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) )
11 6 7 8 9 10 mendval ( 𝑀 ∈ V → ( MEndo ‘ 𝑀 ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) )
12 1 11 syl5eq ( 𝑀 ∈ V → 𝐴 = ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) )
13 12 fveq2d ( 𝑀 ∈ V → ( Base ‘ 𝐴 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥f ( +g𝑀 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) ) ⟩ } ) ) )
14 5 13 eqtr4d ( 𝑀 ∈ V → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) )
15 base0 ∅ = ( Base ‘ ∅ )
16 reldmlmhm Rel dom LMHom
17 16 ovprc1 ( ¬ 𝑀 ∈ V → ( 𝑀 LMHom 𝑀 ) = ∅ )
18 fvprc ( ¬ 𝑀 ∈ V → ( MEndo ‘ 𝑀 ) = ∅ )
19 1 18 syl5eq ( ¬ 𝑀 ∈ V → 𝐴 = ∅ )
20 19 fveq2d ( ¬ 𝑀 ∈ V → ( Base ‘ 𝐴 ) = ( Base ‘ ∅ ) )
21 15 17 20 3eqtr4a ( ¬ 𝑀 ∈ V → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) )
22 14 21 pm2.61i ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 )