Metamath Proof Explorer


Theorem mulasspi

Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion mulasspi ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) )

Proof

Step Hyp Ref Expression
1 pinn ( 𝐴N𝐴 ∈ ω )
2 pinn ( 𝐵N𝐵 ∈ ω )
3 pinn ( 𝐶N𝐶 ∈ ω )
4 nnmass ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
5 1 2 3 4 syl3an ( ( 𝐴N𝐵N𝐶N ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
6 mulclpi ( ( 𝐴N𝐵N ) → ( 𝐴 ·N 𝐵 ) ∈ N )
7 mulpiord ( ( ( 𝐴 ·N 𝐵 ) ∈ N𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) )
8 6 7 sylan ( ( ( 𝐴N𝐵N ) ∧ 𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) )
9 mulpiord ( ( 𝐴N𝐵N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) )
10 9 oveq1d ( ( 𝐴N𝐵N ) → ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) )
11 10 adantr ( ( ( 𝐴N𝐵N ) ∧ 𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) )
12 8 11 eqtrd ( ( ( 𝐴N𝐵N ) ∧ 𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) )
13 12 3impa ( ( 𝐴N𝐵N𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) )
14 mulclpi ( ( 𝐵N𝐶N ) → ( 𝐵 ·N 𝐶 ) ∈ N )
15 mulpiord ( ( 𝐴N ∧ ( 𝐵 ·N 𝐶 ) ∈ N ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) )
16 14 15 sylan2 ( ( 𝐴N ∧ ( 𝐵N𝐶N ) ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) )
17 mulpiord ( ( 𝐵N𝐶N ) → ( 𝐵 ·N 𝐶 ) = ( 𝐵 ·o 𝐶 ) )
18 17 oveq2d ( ( 𝐵N𝐶N ) → ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
19 18 adantl ( ( 𝐴N ∧ ( 𝐵N𝐶N ) ) → ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
20 16 19 eqtrd ( ( 𝐴N ∧ ( 𝐵N𝐶N ) ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
21 20 3impb ( ( 𝐴N𝐵N𝐶N ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) )
22 5 13 21 3eqtr4d ( ( 𝐴N𝐵N𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) )
23 dmmulpi dom ·N = ( N × N )
24 0npi ¬ ∅ ∈ N
25 23 24 ndmovass ( ¬ ( 𝐴N𝐵N𝐶N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) )
26 22 25 pm2.61i ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) )