Metamath Proof Explorer


Theorem nn0le2msqi

Description: The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0le2msqi.1 𝐴 ∈ ℕ0
nn0le2msqi.2 𝐵 ∈ ℕ0
Assertion nn0le2msqi ( 𝐴𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nn0le2msqi.1 𝐴 ∈ ℕ0
2 nn0le2msqi.2 𝐵 ∈ ℕ0
3 1 nn0ge0i 0 ≤ 𝐴
4 2 nn0ge0i 0 ≤ 𝐵
5 1 nn0rei 𝐴 ∈ ℝ
6 2 nn0rei 𝐵 ∈ ℝ
7 5 6 le2sqi ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) )
8 3 4 7 mp2an ( 𝐴𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) )
9 1 nn0cni 𝐴 ∈ ℂ
10 9 sqvali ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )
11 2 nn0cni 𝐵 ∈ ℂ
12 11 sqvali ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 )
13 10 12 breq12i ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) )
14 8 13 bitri ( 𝐴𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) )