Metamath Proof Explorer


Theorem nprmi

Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses nprmi.1 𝐴 ∈ ℕ
nprmi.2 𝐵 ∈ ℕ
nprmi.3 1 < 𝐴
nprmi.4 1 < 𝐵
nprmi.5 ( 𝐴 · 𝐵 ) = 𝑁
Assertion nprmi ¬ 𝑁 ∈ ℙ

Proof

Step Hyp Ref Expression
1 nprmi.1 𝐴 ∈ ℕ
2 nprmi.2 𝐵 ∈ ℕ
3 nprmi.3 1 < 𝐴
4 nprmi.4 1 < 𝐵
5 nprmi.5 ( 𝐴 · 𝐵 ) = 𝑁
6 eluz2b2 ( 𝐴 ∈ ( ℤ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) )
7 eluz2b2 ( 𝐵 ∈ ( ℤ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) )
8 nprm ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ )
9 6 7 8 syl2anbr ( ( ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ )
10 1 3 2 4 9 mp4an ¬ ( 𝐴 · 𝐵 ) ∈ ℙ
11 5 eleq1i ( ( 𝐴 · 𝐵 ) ∈ ℙ ↔ 𝑁 ∈ ℙ )
12 10 11 mtbi ¬ 𝑁 ∈ ℙ