Metamath Proof Explorer


Theorem off

Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses off.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
off.2 ( 𝜑𝐹 : 𝐴𝑆 )
off.3 ( 𝜑𝐺 : 𝐵𝑇 )
off.4 ( 𝜑𝐴𝑉 )
off.5 ( 𝜑𝐵𝑊 )
off.6 ( 𝐴𝐵 ) = 𝐶
Assertion off ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) : 𝐶𝑈 )

Proof

Step Hyp Ref Expression
1 off.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
2 off.2 ( 𝜑𝐹 : 𝐴𝑆 )
3 off.3 ( 𝜑𝐺 : 𝐵𝑇 )
4 off.4 ( 𝜑𝐴𝑉 )
5 off.5 ( 𝜑𝐵𝑊 )
6 off.6 ( 𝐴𝐵 ) = 𝐶
7 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
8 3 ffnd ( 𝜑𝐺 Fn 𝐵 )
9 eqidd ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) = ( 𝐹𝑧 ) )
10 eqidd ( ( 𝜑𝑧𝐵 ) → ( 𝐺𝑧 ) = ( 𝐺𝑧 ) )
11 7 8 4 5 6 9 10 offval ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) = ( 𝑧𝐶 ↦ ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ) )
12 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
13 6 12 eqsstrri 𝐶𝐴
14 13 sseli ( 𝑧𝐶𝑧𝐴 )
15 ffvelrn ( ( 𝐹 : 𝐴𝑆𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝑆 )
16 2 14 15 syl2an ( ( 𝜑𝑧𝐶 ) → ( 𝐹𝑧 ) ∈ 𝑆 )
17 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
18 6 17 eqsstrri 𝐶𝐵
19 18 sseli ( 𝑧𝐶𝑧𝐵 )
20 ffvelrn ( ( 𝐺 : 𝐵𝑇𝑧𝐵 ) → ( 𝐺𝑧 ) ∈ 𝑇 )
21 3 19 20 syl2an ( ( 𝜑𝑧𝐶 ) → ( 𝐺𝑧 ) ∈ 𝑇 )
22 1 ralrimivva ( 𝜑 → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
23 22 adantr ( ( 𝜑𝑧𝐶 ) → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
24 ovrspc2v ( ( ( ( 𝐹𝑧 ) ∈ 𝑆 ∧ ( 𝐺𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ∈ 𝑈 )
25 16 21 23 24 syl21anc ( ( 𝜑𝑧𝐶 ) → ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ∈ 𝑈 )
26 11 25 fmpt3d ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) : 𝐶𝑈 )