Metamath Proof Explorer


Theorem onfin2

Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)

Ref Expression
Assertion onfin2 ω = ( On ∩ Fin )

Proof

Step Hyp Ref Expression
1 nnon ( 𝑥 ∈ ω → 𝑥 ∈ On )
2 onfin ( 𝑥 ∈ On → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ ω ) )
3 2 biimprcd ( 𝑥 ∈ ω → ( 𝑥 ∈ On → 𝑥 ∈ Fin ) )
4 1 3 jcai ( 𝑥 ∈ ω → ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) )
5 2 biimpa ( ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ ω )
6 4 5 impbii ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) )
7 elin ( 𝑥 ∈ ( On ∩ Fin ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) )
8 6 7 bitr4i ( 𝑥 ∈ ω ↔ 𝑥 ∈ ( On ∩ Fin ) )
9 8 eqriv ω = ( On ∩ Fin )