Metamath Proof Explorer


Theorem onint

Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)

Ref Expression
Assertion onint ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 ordon Ord On
2 tz7.5 ( ( Ord On ∧ 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ )
3 1 2 mp3an1 ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ )
4 ssel ( 𝐴 ⊆ On → ( 𝑥𝐴𝑥 ∈ On ) )
5 4 imdistani ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) )
6 ssel ( 𝐴 ⊆ On → ( 𝑧𝐴𝑧 ∈ On ) )
7 ontri1 ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑥𝑧 ↔ ¬ 𝑧𝑥 ) )
8 ssel ( 𝑥𝑧 → ( 𝑦𝑥𝑦𝑧 ) )
9 7 8 syl6bir ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑧𝑥 → ( 𝑦𝑥𝑦𝑧 ) ) )
10 9 ex ( 𝑥 ∈ On → ( 𝑧 ∈ On → ( ¬ 𝑧𝑥 → ( 𝑦𝑥𝑦𝑧 ) ) ) )
11 6 10 sylan9 ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧𝐴 → ( ¬ 𝑧𝑥 → ( 𝑦𝑥𝑦𝑧 ) ) ) )
12 11 com4r ( 𝑦𝑥 → ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧𝐴 → ( ¬ 𝑧𝑥𝑦𝑧 ) ) ) )
13 12 imp31 ( ( ( 𝑦𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) ∧ 𝑧𝐴 ) → ( ¬ 𝑧𝑥𝑦𝑧 ) )
14 13 ralimdva ( ( 𝑦𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ∀ 𝑧𝐴 ¬ 𝑧𝑥 → ∀ 𝑧𝐴 𝑦𝑧 ) )
15 disj ( ( 𝐴𝑥 ) = ∅ ↔ ∀ 𝑧𝐴 ¬ 𝑧𝑥 )
16 vex 𝑦 ∈ V
17 16 elint2 ( 𝑦 𝐴 ↔ ∀ 𝑧𝐴 𝑦𝑧 )
18 14 15 17 3imtr4g ( ( 𝑦𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ( 𝐴𝑥 ) = ∅ → 𝑦 𝐴 ) )
19 5 18 sylan2 ( ( 𝑦𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ) → ( ( 𝐴𝑥 ) = ∅ → 𝑦 𝐴 ) )
20 19 exp32 ( 𝑦𝑥 → ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( ( 𝐴𝑥 ) = ∅ → 𝑦 𝐴 ) ) ) )
21 20 com4l ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( ( 𝐴𝑥 ) = ∅ → ( 𝑦𝑥𝑦 𝐴 ) ) ) )
22 21 imp32 ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → ( 𝑦𝑥𝑦 𝐴 ) )
23 22 ssrdv ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → 𝑥 𝐴 )
24 intss1 ( 𝑥𝐴 𝐴𝑥 )
25 24 ad2antrl ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → 𝐴𝑥 )
26 23 25 eqssd ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → 𝑥 = 𝐴 )
27 26 eleq1d ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → ( 𝑥𝐴 𝐴𝐴 ) )
28 27 biimpd ( ( 𝐴 ⊆ On ∧ ( 𝑥𝐴 ∧ ( 𝐴𝑥 ) = ∅ ) ) → ( 𝑥𝐴 𝐴𝐴 ) )
29 28 exp32 ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( ( 𝐴𝑥 ) = ∅ → ( 𝑥𝐴 𝐴𝐴 ) ) ) )
30 29 com34 ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( 𝑥𝐴 → ( ( 𝐴𝑥 ) = ∅ → 𝐴𝐴 ) ) ) )
31 30 pm2.43d ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( ( 𝐴𝑥 ) = ∅ → 𝐴𝐴 ) ) )
32 31 rexlimdv ( 𝐴 ⊆ On → ( ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ → 𝐴𝐴 ) )
33 3 32 syl5 ( 𝐴 ⊆ On → ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 ) )
34 33 anabsi5 ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )