Metamath Proof Explorer


Theorem opabbid

Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Hypotheses opabbid.1 𝑥 𝜑
opabbid.2 𝑦 𝜑
opabbid.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion opabbid ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 opabbid.1 𝑥 𝜑
2 opabbid.2 𝑦 𝜑
3 opabbid.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 3 anbi2d ( 𝜑 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜒 ) ) )
5 2 4 exbid ( 𝜑 → ( ∃ 𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜒 ) ) )
6 1 5 exbid ( 𝜑 → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜒 ) ) )
7 6 abbidv ( 𝜑 → { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜒 ) } )
8 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) }
9 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜒 ) }
10 7 8 9 3eqtr4g ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜒 } )