Metamath Proof Explorer


Theorem ordin

Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of TakeutiZaring p. 37. (Contributed by NM, 9-May-1994)

Ref Expression
Assertion ordin ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐴 → Tr 𝐴 )
2 ordtr ( Ord 𝐵 → Tr 𝐵 )
3 trin ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Tr ( 𝐴𝐵 ) )
5 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
6 trssord ( ( Tr ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ∧ Ord 𝐵 ) → Ord ( 𝐴𝐵 ) )
7 5 6 mp3an2 ( ( Tr ( 𝐴𝐵 ) ∧ Ord 𝐵 ) → Ord ( 𝐴𝐵 ) )
8 4 7 sylancom ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴𝐵 ) )