Metamath Proof Explorer


Theorem orduninsuc

Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion orduninsuc ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )

Proof

Step Hyp Ref Expression
1 ordeleqon ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) )
2 id ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) )
3 unieq ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) )
4 2 3 eqeq12d ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = 𝐴 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) )
5 eqeq1 ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = suc 𝑥 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) )
6 5 rexbidv ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) )
7 6 notbid ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) )
8 4 7 bibi12d ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) )
9 0elon ∅ ∈ On
10 9 elimel if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On
11 10 onuninsuci ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 )
12 8 11 dedth ( 𝐴 ∈ On → ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
13 unon On = On
14 13 eqcomi On = On
15 onprc ¬ On ∈ V
16 vex 𝑥 ∈ V
17 16 sucex suc 𝑥 ∈ V
18 eleq1 ( On = suc 𝑥 → ( On ∈ V ↔ suc 𝑥 ∈ V ) )
19 17 18 mpbiri ( On = suc 𝑥 → On ∈ V )
20 15 19 mto ¬ On = suc 𝑥
21 20 a1i ( 𝑥 ∈ On → ¬ On = suc 𝑥 )
22 21 nrex ¬ ∃ 𝑥 ∈ On On = suc 𝑥
23 14 22 2th ( On = On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 )
24 id ( 𝐴 = On → 𝐴 = On )
25 unieq ( 𝐴 = On → 𝐴 = On )
26 24 25 eqeq12d ( 𝐴 = On → ( 𝐴 = 𝐴 ↔ On = On ) )
27 eqeq1 ( 𝐴 = On → ( 𝐴 = suc 𝑥 ↔ On = suc 𝑥 ) )
28 27 rexbidv ( 𝐴 = On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On On = suc 𝑥 ) )
29 28 notbid ( 𝐴 = On → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) )
30 26 29 bibi12d ( 𝐴 = On → ( ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( On = On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) )
31 23 30 mpbiri ( 𝐴 = On → ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
32 12 31 jaoi ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
33 1 32 sylbi ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )