Metamath Proof Explorer


Theorem orduniss2

Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005)

Ref Expression
Assertion orduniss2 ( Ord 𝐴 { 𝑥 ∈ On ∣ 𝑥𝐴 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥 ∈ On ∣ 𝑥𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥𝐴 ) }
2 incom ( { 𝑥𝑥 ∈ On } ∩ { 𝑥𝑥𝐴 } ) = ( { 𝑥𝑥𝐴 } ∩ { 𝑥𝑥 ∈ On } )
3 inab ( { 𝑥𝑥 ∈ On } ∩ { 𝑥𝑥𝐴 } ) = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥𝐴 ) }
4 df-pw 𝒫 𝐴 = { 𝑥𝑥𝐴 }
5 4 eqcomi { 𝑥𝑥𝐴 } = 𝒫 𝐴
6 abid2 { 𝑥𝑥 ∈ On } = On
7 5 6 ineq12i ( { 𝑥𝑥𝐴 } ∩ { 𝑥𝑥 ∈ On } ) = ( 𝒫 𝐴 ∩ On )
8 2 3 7 3eqtr3i { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥𝐴 ) } = ( 𝒫 𝐴 ∩ On )
9 1 8 eqtri { 𝑥 ∈ On ∣ 𝑥𝐴 } = ( 𝒫 𝐴 ∩ On )
10 ordpwsuc ( Ord 𝐴 → ( 𝒫 𝐴 ∩ On ) = suc 𝐴 )
11 9 10 syl5eq ( Ord 𝐴 → { 𝑥 ∈ On ∣ 𝑥𝐴 } = suc 𝐴 )
12 11 unieqd ( Ord 𝐴 { 𝑥 ∈ On ∣ 𝑥𝐴 } = suc 𝐴 )
13 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
14 12 13 eqtrd ( Ord 𝐴 { 𝑥 ∈ On ∣ 𝑥𝐴 } = 𝐴 )