Metamath Proof Explorer


Theorem otiunsndisj

Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otiunsndisj ( 𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )

Proof

Step Hyp Ref Expression
1 eliun ( 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ ∃ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )
2 otthg ( ( 𝑎𝑉𝐵𝑋𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) → ( ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ( 𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒 ) ) )
3 simp1 ( ( 𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒 ) → 𝑎 = 𝑑 )
4 2 3 syl6bi ( ( 𝑎𝑉𝐵𝑋𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) → ( ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ → 𝑎 = 𝑑 ) )
5 4 con3d ( ( 𝑎𝑉𝐵𝑋𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) → ( ¬ 𝑎 = 𝑑 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
6 5 3exp ( 𝑎𝑉 → ( 𝐵𝑋 → ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) → ( ¬ 𝑎 = 𝑑 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) ) ) )
7 6 impcom ( ( 𝐵𝑋𝑎𝑉 ) → ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) → ( ¬ 𝑎 = 𝑑 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) ) )
8 7 com3r ( ¬ 𝑎 = 𝑑 → ( ( 𝐵𝑋𝑎𝑉 ) → ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) ) )
9 8 imp31 ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
10 velsn ( 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ )
11 eqeq1 ( 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ → ( 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
12 11 notbid ( 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
13 10 12 sylbi ( 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
14 9 13 syl5ibrcom ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) → ( 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
15 14 imp ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
16 velsn ( 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ↔ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
17 15 16 sylnibr ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
18 17 adantr ( ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) ∧ 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) ) → ¬ 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
19 18 nrexdv ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ ∃ 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
20 eliun ( 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ↔ ∃ 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
21 19 20 sylnibr ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) ∧ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
22 21 rexlimdva2 ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) → ( ∃ 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ) )
23 1 22 syl5bi ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) → ( 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ) )
24 23 ralrimiv ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) → ∀ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
25 oteq3 ( 𝑐 = 𝑒 → ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
26 25 sneqd ( 𝑐 = 𝑒 → { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } = { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
27 26 cbviunv 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } = 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ }
28 27 eleq2i ( 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
29 28 notbii ( ¬ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
30 29 ralbii ( ∀ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ ∀ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑒 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
31 24 30 sylibr ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) → ∀ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
32 disj ( ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ↔ ∀ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
33 31 32 sylibr ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋𝑎𝑉 ) ) → ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ )
34 33 expcom ( ( 𝐵𝑋𝑎𝑉 ) → ( ¬ 𝑎 = 𝑑 → ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
35 34 orrd ( ( 𝐵𝑋𝑎𝑉 ) → ( 𝑎 = 𝑑 ∨ ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
36 35 adantrr ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( 𝑎 = 𝑑 ∨ ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
37 36 ralrimivva ( 𝐵𝑋 → ∀ 𝑎𝑉𝑑𝑉 ( 𝑎 = 𝑑 ∨ ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
38 sneq ( 𝑎 = 𝑑 → { 𝑎 } = { 𝑑 } )
39 38 difeq2d ( 𝑎 = 𝑑 → ( 𝑊 ∖ { 𝑎 } ) = ( 𝑊 ∖ { 𝑑 } ) )
40 oteq1 ( 𝑎 = 𝑑 → ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ )
41 40 sneqd ( 𝑎 = 𝑑 → { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } = { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
42 39 41 disjiunb ( Disj 𝑎𝑉 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ ∀ 𝑎𝑉𝑑𝑉 ( 𝑎 = 𝑑 ∨ ( 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐 ∈ ( 𝑊 ∖ { 𝑑 } ) { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
43 37 42 sylibr ( 𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ ( 𝑊 ∖ { 𝑎 } ) { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )