Metamath Proof Explorer


Theorem phplem3

Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998)

Ref Expression
Hypotheses phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion phplem3 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 phplem2.1 𝐴 ∈ V
2 phplem2.2 𝐵 ∈ V
3 elsuci ( 𝐵 ∈ suc 𝐴 → ( 𝐵𝐴𝐵 = 𝐴 ) )
4 1 2 phplem2 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )
5 1 enref 𝐴𝐴
6 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
7 orddif ( Ord 𝐴𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) )
8 6 7 syl ( 𝐴 ∈ ω → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) )
9 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
10 9 difeq2d ( 𝐴 = 𝐵 → ( suc 𝐴 ∖ { 𝐴 } ) = ( suc 𝐴 ∖ { 𝐵 } ) )
11 10 eqcoms ( 𝐵 = 𝐴 → ( suc 𝐴 ∖ { 𝐴 } ) = ( suc 𝐴 ∖ { 𝐵 } ) )
12 8 11 sylan9eq ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐴 = ( suc 𝐴 ∖ { 𝐵 } ) )
13 5 12 breqtrid ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )
14 4 13 jaodan ( ( 𝐴 ∈ ω ∧ ( 𝐵𝐴𝐵 = 𝐴 ) ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )
15 3 14 sylan2 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )