Metamath Proof Explorer


Theorem pm10.55

Description: Theorem *10.55 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.55 ( ( ∃ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 exsimpl ( ∃ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 𝜑 )
2 1 anim1i ( ( ∃ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) )
3 exintr ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
4 3 imdistanri ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( ∃ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) )
5 2 4 impbii ( ( ∃ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) )