Description: Theorem *10.55 in WhiteheadRussell p. 156. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm10.55 | ⊢ ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) | |
| 2 | 1 | anim1i | ⊢ ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 3 | exintr | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) | |
| 4 | 3 | imdistanri | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 5 | 2 4 | impbii | ⊢ ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |