Metamath Proof Explorer


Theorem prcdnq

Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of Gleason p. 121. (Contributed by NM, 25-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prcdnq ( ( 𝐴P𝐵𝐴 ) → ( 𝐶 <Q 𝐵𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltrelnq <Q ⊆ ( Q × Q )
2 relxp Rel ( Q × Q )
3 relss ( <Q ⊆ ( Q × Q ) → ( Rel ( Q × Q ) → Rel <Q ) )
4 1 2 3 mp2 Rel <Q
5 4 brrelex1i ( 𝐶 <Q 𝐵𝐶 ∈ V )
6 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
7 6 anbi2d ( 𝑥 = 𝐵 → ( ( 𝐴P𝑥𝐴 ) ↔ ( 𝐴P𝐵𝐴 ) ) )
8 breq2 ( 𝑥 = 𝐵 → ( 𝑦 <Q 𝑥𝑦 <Q 𝐵 ) )
9 7 8 anbi12d ( 𝑥 = 𝐵 → ( ( ( 𝐴P𝑥𝐴 ) ∧ 𝑦 <Q 𝑥 ) ↔ ( ( 𝐴P𝐵𝐴 ) ∧ 𝑦 <Q 𝐵 ) ) )
10 9 imbi1d ( 𝑥 = 𝐵 → ( ( ( ( 𝐴P𝑥𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦𝐴 ) ↔ ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦𝐴 ) ) )
11 breq1 ( 𝑦 = 𝐶 → ( 𝑦 <Q 𝐵𝐶 <Q 𝐵 ) )
12 11 anbi2d ( 𝑦 = 𝐶 → ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝑦 <Q 𝐵 ) ↔ ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) ) )
13 eleq1 ( 𝑦 = 𝐶 → ( 𝑦𝐴𝐶𝐴 ) )
14 12 13 imbi12d ( 𝑦 = 𝐶 → ( ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦𝐴 ) ↔ ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶𝐴 ) ) )
15 elnpi ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
16 15 simprbi ( 𝐴P → ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) )
17 16 r19.21bi ( ( 𝐴P𝑥𝐴 ) → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) )
18 17 simpld ( ( 𝐴P𝑥𝐴 ) → ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) )
19 18 19.21bi ( ( 𝐴P𝑥𝐴 ) → ( 𝑦 <Q 𝑥𝑦𝐴 ) )
20 19 imp ( ( ( 𝐴P𝑥𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦𝐴 )
21 10 14 20 vtocl2g ( ( 𝐵𝐴𝐶 ∈ V ) → ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶𝐴 ) )
22 5 21 sylan2 ( ( 𝐵𝐴𝐶 <Q 𝐵 ) → ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶𝐴 ) )
23 22 adantll ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶𝐴 ) )
24 23 pm2.43i ( ( ( 𝐴P𝐵𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶𝐴 )
25 24 ex ( ( 𝐴P𝐵𝐴 ) → ( 𝐶 <Q 𝐵𝐶𝐴 ) )