Metamath Proof Explorer


Theorem qfto

Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion qfto ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) )
2 brun ( 𝑥 ( 𝑅 𝑅 ) 𝑦 ↔ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) )
3 df-br ( 𝑥 ( 𝑅 𝑅 ) 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) )
4 vex 𝑥 ∈ V
5 vex 𝑦 ∈ V
6 4 5 brcnv ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
7 6 orbi2i ( ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
8 2 3 7 3bitr3i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
9 1 8 imbi12i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
10 9 2albii ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
11 relxp Rel ( 𝐴 × 𝐵 )
12 ssrel ( Rel ( 𝐴 × 𝐵 ) → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) ) ) )
13 11 12 ax-mp ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑅 𝑅 ) ) )
14 r2al ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
15 10 13 14 3bitr4i ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )